ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.06050
  4. Cited By
Wasserstein Distributionally Robust Optimization and Variation
  Regularization

Wasserstein Distributionally Robust Optimization and Variation Regularization

17 December 2017
Rui Gao
Xi Chen
A. Kleywegt
    OOD
ArXivPDFHTML

Papers citing "Wasserstein Distributionally Robust Optimization and Variation Regularization"

34 / 34 papers shown
Title
Evaluating Model Performance Under Worst-case Subpopulations
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
48
17
0
01 Jul 2024
Diagnosing Model Performance Under Distribution Shift
Diagnosing Model Performance Under Distribution Shift
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
37
28
0
03 Mar 2023
Distributionally Robust Multiclass Classification and Applications in Deep Image Classifiers
Ruidi Chen
Boran Hao
I. Paschalidis
19
5
0
15 Oct 2022
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
MaskTune: Mitigating Spurious Correlations by Forcing to Explore
Saeid Asgari Taghanaki
Aliasghar Khani
Fereshte Khani
A. Gholami
Linh-Tam Tran
Ali Mahdavi-Amiri
Ghassan Hamarneh
AAML
46
45
0
30 Sep 2022
Learning Invariant Representations under General Interventions on the
  Response
Learning Invariant Representations under General Interventions on the Response
Kang Du
Yu Xiang
OOD
22
8
0
22 Aug 2022
Distributionally Robust Bayesian Optimization with $\varphi$-divergences
Distributionally Robust Bayesian Optimization with φ\varphiφ-divergences
Hisham Husain
Vu-Linh Nguyen
Anton Van Den Hengel
40
13
0
04 Mar 2022
Global-Local Regularization Via Distributional Robustness
Global-Local Regularization Via Distributional Robustness
Hoang Phan
Trung Le
Trung-Nghia Phung
Tu Bui
Nhat Ho
Dinh Q. Phung
OOD
22
12
0
01 Mar 2022
Human Imperceptible Attacks and Applications to Improve Fairness
Human Imperceptible Attacks and Applications to Improve Fairness
Xinru Hua
Huanzhong Xu
Jose H. Blanchet
V. Nguyen
AAML
27
3
0
30 Nov 2021
Distributionally Robust Multi-Output Regression Ranking
Distributionally Robust Multi-Output Regression Ranking
Shahabeddin Sotudian
Ruidi Chen
I. Paschalidis
OOD
25
2
0
27 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
61
519
0
31 Aug 2021
Distributionally Robust Learning
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
27
65
0
20 Aug 2021
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Seonguk Seo
Joon-Young Lee
Bohyung Han
FaML
68
48
0
06 Aug 2021
Poisoning Attack against Estimating from Pairwise Comparisons
Poisoning Attack against Estimating from Pairwise Comparisons
Ke Ma
Qianqian Xu
Jinshan Zeng
Xiaochun Cao
Qingming Huang
AAML
24
22
0
05 Jul 2021
Distributionally Robust Prescriptive Analytics with Wasserstein Distance
Distributionally Robust Prescriptive Analytics with Wasserstein Distance
Tianyu Wang
Ningyuan Chen
Chun Wang
15
6
0
10 Jun 2021
Learning quantum data with the quantum Earth Mover's distance
Learning quantum data with the quantum Earth Mover's distance
B. Kiani
Giacomo De Palma
M. Marvian
Zi-Wen Liu
S. Lloyd
21
45
0
08 Jan 2021
Unbiased Gradient Estimation for Distributionally Robust Learning
Unbiased Gradient Estimation for Distributionally Robust Learning
Soumyadip Ghosh
M. Squillante
OOD
26
7
0
22 Dec 2020
Adversarial Classification: Necessary conditions and geometric flows
Adversarial Classification: Necessary conditions and geometric flows
Nicolas García Trillos
Ryan W. Murray
AAML
37
19
0
21 Nov 2020
Statistical Inference for Maximin Effects: Identifying Stable
  Associations across Multiple Studies
Statistical Inference for Maximin Effects: Identifying Stable Associations across Multiple Studies
Zijian Guo
28
17
0
15 Nov 2020
Domain adaptation under structural causal models
Domain adaptation under structural causal models
Yuansi Chen
Peter Buhlmann
CML
OOD
AI4CE
36
38
0
29 Oct 2020
Distributionally Robust Losses for Latent Covariate Mixtures
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
18
79
0
28 Jul 2020
Robust Machine Learning via Privacy/Rate-Distortion Theory
Robust Machine Learning via Privacy/Rate-Distortion Theory
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
OOD
22
6
0
22 Jul 2020
A Distributionally Robust Approach to Fair Classification
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
28
61
0
18 Jul 2020
Robust Grouped Variable Selection Using Distributionally Robust
  Optimization
Robust Grouped Variable Selection Using Distributionally Robust Optimization
Ruidi Chen
I. Paschalidis
OOD
15
3
0
10 Jun 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex
  Learning
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
26
9
0
08 Jun 2020
Distributionally Robust Weighted $k$-Nearest Neighbors
Distributionally Robust Weighted kkk-Nearest Neighbors
Shixiang Zhu
Liyan Xie
Minghe Zhang
Rui Gao
Yao Xie
OOD
21
7
0
07 Jun 2020
Principled learning method for Wasserstein distributionally robust
  optimization with local perturbations
Principled learning method for Wasserstein distributionally robust optimization with local perturbations
Yongchan Kwon
Wonyoung Hedge Kim
Joong-Ho Won
M. Paik
22
12
0
05 Jun 2020
Distributionally Robust Bayesian Optimization
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
32
77
0
20 Feb 2020
A First-Order Algorithmic Framework for Wasserstein Distributionally
  Robust Logistic Regression
A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression
Jiajin Li
Sen Huang
Anthony Man-Cho So
OOD
32
12
0
28 Oct 2019
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
25
389
0
23 Aug 2019
Confidence Regions in Wasserstein Distributionally Robust Estimation
Confidence Regions in Wasserstein Distributionally Robust Estimation
Jose H. Blanchet
Karthyek Murthy
Nian Si
OOD
26
57
0
04 Jun 2019
Distributionally Robust Inverse Covariance Estimation: The Wasserstein
  Shrinkage Estimator
Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator
Viet Anh Nguyen
Daniel Kuhn
Peyman Mohajerin Esfahani
46
49
0
18 May 2018
Robust GANs against Dishonest Adversaries
Robust GANs against Dishonest Adversaries
Zhi Xu
Chengtao Li
Stefanie Jegelka
AAML
34
3
0
27 Feb 2018
Calibration of Distributionally Robust Empirical Optimization Models
Calibration of Distributionally Robust Empirical Optimization Models
Jun-ya Gotoh
M. J. Kim
Andrew E. B. Lim
21
41
0
17 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
58
855
0
29 Oct 2017
1