Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.05861
Cited By
WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials
15 December 2017
M. Gastegger
Ludwig Schwiedrzik
Marius Bittermann
Florian Berzsenyi
P. Marquetand
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials"
5 / 5 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
93
7
0
12 Mar 2025
Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra
M. Gastegger
J. Behler
P. Marquetand
AI4CE
33
338
0
16 May 2017
The Many-Body Expansion Combined with Neural Networks
Kun Yao
John E. Herr
John A. Parkhill
58
96
0
22 Sep 2016
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
69
607
0
09 Sep 2016
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
187
1,591
0
12 Sep 2011
1