ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.05861
  4. Cited By
WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in
  Machine Learning Potentials

WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials

15 December 2017
M. Gastegger
Ludwig Schwiedrzik
Marius Bittermann
Florian Berzsenyi
P. Marquetand
ArXiv (abs)PDFHTML

Papers citing "WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials"

5 / 5 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
93
7
0
12 Mar 2025
Machine Learning Molecular Dynamics for the Simulation of Infrared
  Spectra
Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra
M. Gastegger
J. Behler
P. Marquetand
AI4CE
33
338
0
16 May 2017
The Many-Body Expansion Combined with Neural Networks
The Many-Body Expansion Combined with Neural Networks
Kun Yao
John E. Herr
John A. Parkhill
58
96
0
22 Sep 2016
By-passing the Kohn-Sham equations with machine learning
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
69
607
0
09 Sep 2016
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
187
1,591
0
12 Sep 2011
1