ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.04144
  4. Cited By
Information Perspective to Probabilistic Modeling: Boltzmann Machines
  versus Born Machines

Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines

12 December 2017
Song Cheng
J. Chen
Lei Wang
ArXivPDFHTML

Papers citing "Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines"

15 / 15 papers shown
Title
Implementing Quantum Generative Adversarial Network (qGAN) and QCBM in Finance
Implementing Quantum Generative Adversarial Network (qGAN) and QCBM in Finance
Santanu Ganguly
GAN
48
2
0
15 Aug 2023
Generative Invertible Quantum Neural Networks
Generative Invertible Quantum Neural Networks
Armand Rousselot
M. Spannowsky
BDL
16
9
0
24 Feb 2023
Deep tensor networks with matrix product operators
Deep tensor networks with matrix product operators
Bojan Žunkovič
72
4
0
16 Sep 2022
Bayesian Learning of Parameterised Quantum Circuits
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
19
11
0
15 Jun 2022
Generative modeling with projected entangled-pair states
Generative modeling with projected entangled-pair states
Tom Vieijra
L. Vanderstraeten
F. Verstraete
56
19
0
16 Feb 2022
F-Divergences and Cost Function Locality in Generative Modelling with
  Quantum Circuits
F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits
Chiara Leadbeater
Louis Sharrock
Brian Coyle
Marcello Benedetti
20
11
0
08 Oct 2021
Tensor networks for unsupervised machine learning
Tensor networks for unsupervised machine learning
Jing Liu
Sujie Li
Jiang Zhang
Pan Zhang
SSL
14
25
0
24 Jun 2021
Tensor networks and efficient descriptions of classical data
Tensor networks and efficient descriptions of classical data
Sirui Lu
Márton Kanász-Nagy
I. Kukuljan
J. I. Cirac
24
24
0
11 Mar 2021
Supervised quantum machine learning models are kernel methods
Supervised quantum machine learning models are kernel methods
Maria Schuld
34
360
0
26 Jan 2021
Noisy intermediate-scale quantum (NISQ) algorithms
Noisy intermediate-scale quantum (NISQ) algorithms
Kishor Bharti
Alba Cervera-Lierta
T. Kyaw
Tobias Haug
Sumner Alperin-Lea
...
Tim Menke
Wai-Keong Mok
Sukin Sim
L. Kwek
Alán Aspuru-Guzik
108
390
0
21 Jan 2021
Estimating expectation values using approximate quantum states
Estimating expectation values using approximate quantum states
M. Paini
A. Kalev
Dan Padilha
Brendan Ruck
27
28
0
09 Nov 2020
Parameterized quantum circuits as machine learning models
Parameterized quantum circuits as machine learning models
Marcello Benedetti
Erika Lloyd
Stefan H. Sack
Mattia Fiorentini
27
869
0
18 Jun 2019
The Born Supremacy: Quantum Advantage and Training of an Ising Born
  Machine
The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine
Brian Coyle
Daniel Mills
V. Danos
E. Kashefi
27
155
0
03 Apr 2019
Learning and Inference on Generative Adversarial Quantum Circuits
Learning and Inference on Generative Adversarial Quantum Circuits
J. Zeng
Y. Wu
Jin-Guo Liu
Lei Wang
Jiangping Hu
GAN
35
75
0
10 Aug 2018
Towards Quantum Machine Learning with Tensor Networks
Towards Quantum Machine Learning with Tensor Networks
W. Huggins
P. Patil
K. B. Whaley
E. Stoudenmire
25
341
0
30 Mar 2018
1