ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.02779
  4. Cited By
Exploring the Landscape of Spatial Robustness

Exploring the Landscape of Spatial Robustness

7 December 2017
Logan Engstrom
Brandon Tran
Dimitris Tsipras
Ludwig Schmidt
A. Madry
    AAML
ArXivPDFHTML

Papers citing "Exploring the Landscape of Spatial Robustness"

32 / 82 papers shown
Title
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary
  Attack
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
43
475
0
03 Jul 2019
Do Image Classifiers Generalize Across Time?
Do Image Classifiers Generalize Across Time?
Vaishaal Shankar
Achal Dave
Rebecca Roelofs
Deva Ramanan
Benjamin Recht
Ludwig Schmidt
20
82
0
05 Jun 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by
  Adversarial Machine Learning and The Way Forward
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
24
187
0
29 May 2019
Functional Adversarial Attacks
Functional Adversarial Attacks
Cassidy Laidlaw
S. Feizi
AAML
19
183
0
29 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
28
375
0
30 Apr 2019
Adversarial camera stickers: A physical camera-based attack on deep
  learning systems
Adversarial camera stickers: A physical camera-based attack on deep learning systems
Juncheng Billy Li
Frank R. Schmidt
J. Zico Kolter
AAML
11
164
0
21 Mar 2019
Single-frame Regularization for Temporally Stable CNNs
Single-frame Regularization for Temporally Stable CNNs
Gabriel Eilertsen
Rafał K. Mantiuk
Jonas Unger
19
43
0
27 Feb 2019
Quantifying Perceptual Distortion of Adversarial Examples
Quantifying Perceptual Distortion of Adversarial Examples
Matt Jordan
N. Manoj
Surbhi Goel
A. Dimakis
19
39
0
21 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
36
210
0
21 Feb 2019
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
40
1,665
0
13 Feb 2019
Daedalus: Breaking Non-Maximum Suppression in Object Detection via
  Adversarial Examples
Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
Derui Wang
Chaoran Li
S. Wen
Qing-Long Han
Surya Nepal
Xiangyu Zhang
Yang Xiang
AAML
30
40
0
06 Feb 2019
Rigorous Agent Evaluation: An Adversarial Approach to Uncover
  Catastrophic Failures
Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures
Junhui Yin
Jiayan Qiu
Csaba Szepesvári
Siqing Zhang
Avraham Ruderman
Jiyang Xie
Krishnamurthy Dvijotham
Zhanyu Ma
N. Heess
Pushmeet Kohli
AAML
15
80
0
04 Dec 2018
Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses
  of Familiar Objects
Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects
Michael A. Alcorn
Melvin Johnson
Zhitao Gong
Chengfei Wang
Long Mai
Naveen Ari
Stella Laurenzo
47
299
0
28 Nov 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
29
64
0
08 Nov 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
13
15
0
30 Sep 2018
Unrestricted Adversarial Examples
Unrestricted Adversarial Examples
Tom B. Brown
Nicholas Carlini
Chiyuan Zhang
Catherine Olsson
Paul Christiano
Ian Goodfellow
AAML
29
101
0
22 Sep 2018
Are You Tampering With My Data?
Are You Tampering With My Data?
Michele Alberti
Vinaychandran Pondenkandath
Marcel Würsch
Manuel Bouillon
Mathias Seuret
Rolf Ingold
Marcus Liwicki
AAML
37
19
0
21 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Why do deep convolutional networks generalize so poorly to small image
  transformations?
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
37
556
0
30 May 2018
Adversarially Robust Generalization Requires More Data
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
25
786
0
30 Apr 2018
Formal Security Analysis of Neural Networks using Symbolic Intervals
Formal Security Analysis of Neural Networks using Symbolic Intervals
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
34
473
0
28 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
25
96
0
20 Apr 2018
Semantic Adversarial Examples
Semantic Adversarial Examples
Hossein Hosseini
Radha Poovendran
GAN
AAML
31
196
0
16 Mar 2018
Defending against Adversarial Attack towards Deep Neural Networks via
  Collaborative Multi-task Training
Defending against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-task Training
Derui Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
41
29
0
14 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
13
503
0
13 Mar 2018
On the Suitability of $L_p$-norms for Creating and Preventing
  Adversarial Examples
On the Suitability of LpL_pLp​-norms for Creating and Preventing Adversarial Examples
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
AAML
24
138
0
27 Feb 2018
A General Framework for Adversarial Examples with Objectives
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
13
191
0
31 Dec 2017
The Robust Manifold Defense: Adversarial Training using Generative
  Models
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
31
174
0
26 Dec 2017
Adversarial Attacks Beyond the Image Space
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
41
145
0
20 Nov 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
67
2,701
0
19 May 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,113
0
04 Nov 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
Previous
12