ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.02162
  4. Cited By
A trans-disciplinary review of deep learning research for water
  resources scientists

A trans-disciplinary review of deep learning research for water resources scientists

6 December 2017
Chaopeng Shen
    AI4CE
ArXivPDFHTML

Papers citing "A trans-disciplinary review of deep learning research for water resources scientists"

21 / 21 papers shown
Title
Deep Learning of Subsurface Flow via Theory-guided Neural Network
Deep Learning of Subsurface Flow via Theory-guided Neural Network
Nanzhe Wang
Dongxiao Zhang
Haibin Chang
Heng Li
AI4CE
42
228
0
24 Oct 2019
Inversion using a new low-dimensional representation of complex binary
  geological media based on a deep neural network
Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network
E. Laloy
Romain Hérault
J. Lee
D. Jacques
N. Linde
41
194
0
25 Oct 2017
Generative Adversarial Networks: An Overview
Generative Adversarial Networks: An Overview
Antonia Creswell
Tom White
Vincent Dumoulin
Kai Arulkumaran
B. Sengupta
Anil A Bharath
GAN
70
3,005
0
19 Oct 2017
Deep learning in remote sensing: a review
Deep learning in remote sensing: a review
Xiaoxiang Zhu
D. Tuia
Lichao Mou
Gui-Song Xia
Liangpei Zhang
Feng Xu
Friedrich Fraundorfer
53
1,602
0
11 Oct 2017
Prolongation of SMAP to Spatio-temporally Seamless Coverage of
  Continental US Using a Deep Learning Neural Network
Prolongation of SMAP to Spatio-temporally Seamless Coverage of Continental US Using a Deep Learning Neural Network
K. Fang
Chaopeng Shen
Daniel Kifer
Xiaohu Yang
AI4TS
20
226
0
20 Jul 2017
A Closer Look at Memorization in Deep Networks
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
84
1,801
0
16 Jun 2017
Atomic Convolutional Networks for Predicting Protein-Ligand Binding
  Affinity
Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity
Joseph Gomes
Bharath Ramsundar
Evan N. Feinberg
Vijay S. Pande
39
192
0
30 Mar 2017
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
210
10,646
0
15 Sep 2016
Unreasonable Effectiveness of Learning Neural Networks: From Accessible
  States and Robust Ensembles to Basic Algorithmic Schemes
Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes
Carlo Baldassi
C. Borgs
J. Chayes
Alessandro Ingrosso
Carlo Lucibello
Luca Saglietti
R. Zecchina
40
166
0
20 May 2016
Recurrent Dropout without Memory Loss
Recurrent Dropout without Memory Loss
Stanislau Semeniuta
Aliaksei Severyn
Erhardt Barth
43
222
0
16 Mar 2016
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN
  Architectures, Dataset Characteristics and Transfer Learning
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
Hoo-Chang Shin
H. Roth
Mingchen Gao
Le Lu
Ziyue Xu
Isabella Nogues
Jianhua Yao
D. Mollura
Ronald M. Summers
24
4,587
0
10 Feb 2016
Towards Better Exploiting Convolutional Neural Networks for Remote
  Sensing Scene Classification
Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification
Keiller Nogueira
O. A. B. Penatti
J. A. dos Santos
39
831
0
04 Feb 2016
The Power of Depth for Feedforward Neural Networks
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
106
731
0
12 Dec 2015
Jet-Images -- Deep Learning Edition
Jet-Images -- Deep Learning Edition
Luke de Oliveira
Michael Kagan
Lester W. Mackey
Benjamin Nachman
A. Schwartzman
PINN
37
309
0
16 Nov 2015
Visualizing and Understanding Recurrent Networks
Visualizing and Understanding Recurrent Networks
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
66
1,100
0
05 Jun 2015
Massively Multitask Networks for Drug Discovery
Massively Multitask Networks for Drug Discovery
Bharath Ramsundar
S. Kearnes
Patrick F. Riley
D. Webster
D. Konerding
Vijay S. Pande
49
470
0
06 Feb 2015
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
74
1,959
0
26 Nov 2014
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
67
8,309
0
06 Nov 2014
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
49
1,178
0
02 Nov 2012
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
326
7,650
0
03 Jul 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
110
12,384
0
24 Jun 2012
1