Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01572
Cited By
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
5 December 2017
Stefan Klus
Ingmar Schuster
Krikamol Muandet
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces"
23 / 23 papers shown
Title
Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
Yuka Hashimoto
Tomoharu Iwata
28
0
0
03 Oct 2024
Dynamical systems and complex networks: A Koopman operator perspective
Stefan Klus
Natavsa Djurdjevac Conrad
18
2
0
14 May 2024
Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method
Edoardo Caldarelli
Antoine Chatalic
Adrià Colomé
C. Molinari
C. Ocampo‐Martinez
Carme Torras
Lorenzo Rosasco
36
0
0
05 Mar 2024
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
40
73
0
21 May 2023
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics Models
Jia-Jie Zhu
21
0
0
27 Apr 2023
Koopman-based generalization bound: New aspect for full-rank weights
Yuka Hashimoto
Sho Sonoda
Isao Ishikawa
Atsushi Nitanda
Taiji Suzuki
11
2
0
12 Feb 2023
Online Estimation of the Koopman Operator Using Fourier Features
Tahiya Salam
Alice K. Li
M. Hsieh
29
6
0
03 Dec 2022
Ensemble forecasts in reproducing kernel Hilbert space family
Benjamin Dufée
Berenger Hug
É. Mémin
G. Tissot
24
1
0
29 Jul 2022
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
30
60
0
27 May 2022
Forward Operator Estimation in Generative Models with Kernel Transfer Operators
Z. Huang
Rudrasis Chakraborty
Vikas Singh
GAN
16
3
0
01 Dec 2021
Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems
Matthew J. Colbrook
Alex Townsend
26
67
0
29 Nov 2021
Deeptime: a Python library for machine learning dynamical models from time series data
Moritz Hoffmann
Martin K. Scherer
Tim Hempel
Andreas Mardt
Brian M. de Silva
...
Stefan Klus
Hao Wu
N. Kutz
Steven L. Brunton
Frank Noé
AI4CE
33
101
0
28 Oct 2021
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
19
54
0
27 Aug 2021
Sobolev Norm Learning Rates for Conditional Mean Embeddings
Prem M. Talwai
A. Shameli
D. Simchi-Levi
24
10
0
16 May 2021
Estimating Koopman operators for nonlinear dynamical systems: a nonparametric approach
Francesco Zanini
A. Chiuso
14
5
0
25 Mar 2021
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
46
392
0
24 Feb 2021
Discovering Causal Structure with Reproducing-Kernel Hilbert Space
ε
ε
ε
-Machines
N. Brodu
James P. Crutchfield
CML
18
16
0
23 Nov 2020
Learning Theory for Estimation of Animal Motion Submanifolds
Nathan Powell
A. Kurdila
13
4
0
30 Mar 2020
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
25
221
0
23 Sep 2019
Dimensionality Reduction of Complex Metastable Systems via Kernel Embeddings of Transition Manifolds
A. Bittracher
Stefan Klus
B. Hamzi
P. Koltai
Christof Schütte
19
22
0
18 Apr 2019
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
34
34
0
13 Feb 2018
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
176
1,124
0
25 Jul 2012
Conditional mean embeddings as regressors - supplementary
Steffen Grunewalder
Guy Lever
Luca Baldassarre
Sam Patterson
Arthur Gretton
Massimiliano Pontil
85
143
0
21 May 2012
1