ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.00961
68
182
v1v2v3v4v5 (latest)

Learning Independent Causal Mechanisms

4 December 2017
Giambattista Parascandolo
Niki Kilbertus
Mateo Rojas-Carulla
Bernhard Schölkopf
    CMLOODDRL
ArXiv (abs)PDFHTML
Abstract

Independent causal mechanisms are a central concept in the study of causality with implications for machine learning tasks. In this work we develop an algorithm to recover a set of (inverse) independent mechanisms relating a distribution transformed by the mechanisms to a reference distribution. The approach is fully unsupervised and based on a set of experts that compete for data to specialize and extract the mechanisms. We test and analyze the proposed method on a series of experiments based on image transformations. Each expert successfully maps a subset of the transformed data to the original domain, and the learned mechanisms generalize to other domains. We discuss implications for domain transfer and links to recent trends in generative modeling.

View on arXiv
Comments on this paper