ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.00779
  4. Cited By
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of
  Spurious Local Minima

Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima

3 December 2017
S. Du
J. Lee
Yuandong Tian
Barnabás Póczós
Aarti Singh
    MLT
ArXivPDFHTML

Papers citing "Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima"

50 / 64 papers shown
Title
System Identification and Control Using Lyapunov-Based Deep Neural Networks without Persistent Excitation: A Concurrent Learning Approach
System Identification and Control Using Lyapunov-Based Deep Neural Networks without Persistent Excitation: A Concurrent Learning Approach
Rebecca G. Hart
Omkar Sudhir Patil
Zachary I. Bell
Warren E. Dixon
14
0
0
15 May 2025
Analysis of the rate of convergence of an over-parametrized
  convolutional neural network image classifier learned by gradient descent
Analysis of the rate of convergence of an over-parametrized convolutional neural network image classifier learned by gradient descent
Michael Kohler
A. Krzyżak
Benjamin Walter
36
1
0
13 May 2024
How does promoting the minority fraction affect generalization? A
  theoretical study of the one-hidden-layer neural network on group imbalance
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
46
4
0
12 Mar 2024
Analysis of the expected $L_2$ error of an over-parametrized deep neural
  network estimate learned by gradient descent without regularization
Analysis of the expected L2L_2L2​ error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
36
3
0
24 Nov 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for
  Learning a Single Neuron
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Towards Theoretically Inspired Neural Initialization Optimization
Towards Theoretically Inspired Neural Initialization Optimization
Yibo Yang
Hong Wang
Haobo Yuan
Zhouchen Lin
29
9
0
12 Oct 2022
Explicitising The Implicit Intrepretability of Deep Neural Networks Via
  Duality
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
26
1
0
01 Mar 2022
Understanding Deep Contrastive Learning via Coordinate-wise Optimization
Understanding Deep Contrastive Learning via Coordinate-wise Optimization
Yuandong Tian
52
34
0
29 Jan 2022
Mode connectivity in the loss landscape of parameterized quantum
  circuits
Mode connectivity in the loss landscape of parameterized quantum circuits
Kathleen E. Hamilton
E. Lynn
R. Pooser
29
3
0
09 Nov 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
  on Pruned Neural Networks
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
31
13
0
12 Oct 2021
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural
  Networks: A Tale of Symmetry II
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks: A Tale of Symmetry II
Yossi Arjevani
M. Field
28
18
0
21 Jul 2021
Continual Learning in the Teacher-Student Setup: Impact of Task
  Similarity
Continual Learning in the Teacher-Student Setup: Impact of Task Similarity
Sebastian Lee
Sebastian Goldt
Andrew M. Saxe
CLL
32
73
0
09 Jul 2021
Neural Active Learning with Performance Guarantees
Neural Active Learning with Performance Guarantees
Pranjal Awasthi
Christoph Dann
Claudio Gentile
Ayush Sekhari
Zhilei Wang
29
22
0
06 Jun 2021
From Local Pseudorandom Generators to Hardness of Learning
From Local Pseudorandom Generators to Hardness of Learning
Amit Daniely
Gal Vardi
109
30
0
20 Jan 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Computational Separation Between Convolutional and Fully-Connected
  Networks
Computational Separation Between Convolutional and Fully-Connected Networks
Eran Malach
Shai Shalev-Shwartz
24
26
0
03 Oct 2020
Generalized Leverage Score Sampling for Neural Networks
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
21
42
0
21 Sep 2020
Nonparametric Learning of Two-Layer ReLU Residual Units
Nonparametric Learning of Two-Layer ReLU Residual Units
Zhunxuan Wang
Linyun He
Chunchuan Lyu
Shay B. Cohen
MLT
OffRL
33
1
0
17 Aug 2020
From Boltzmann Machines to Neural Networks and Back Again
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
Adam R. Klivans
Frederic Koehler
19
5
0
25 Jul 2020
The Gaussian equivalence of generative models for learning with shallow
  neural networks
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
Understanding and Improving Information Transfer in Multi-Task Learning
Understanding and Improving Information Transfer in Multi-Task Learning
Sen Wu
Hongyang R. Zhang
Christopher Ré
18
154
0
02 May 2020
Orthogonal Over-Parameterized Training
Orthogonal Over-Parameterized Training
Weiyang Liu
Rongmei Lin
Zhen Liu
James M. Rehg
Liam Paull
Li Xiong
Le Song
Adrian Weller
32
41
0
09 Apr 2020
Symmetry & critical points for a model shallow neural network
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
34
13
0
23 Mar 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
16
4
0
22 Feb 2020
Replica Exchange for Non-Convex Optimization
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
27
21
0
23 Jan 2020
Thresholds of descending algorithms in inference problems
Thresholds of descending algorithms in inference problems
Stefano Sarao Mannelli
Lenka Zdeborova
AI4CE
24
4
0
02 Jan 2020
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Naive Gabor Networks for Hyperspectral Image Classification
Naive Gabor Networks for Hyperspectral Image Classification
Chenying Liu
Jun Li
Lin He
Antonio J. Plaza
Shutao Li
Bo Li
37
45
0
09 Dec 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and
  Generalization
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
42
51
0
24 Jul 2019
Recursive Sketches for Modular Deep Learning
Recursive Sketches for Modular Deep Learning
Badih Ghazi
Rina Panigrahy
Joshua R. Wang
13
20
0
29 May 2019
Fine-grained Optimization of Deep Neural Networks
Fine-grained Optimization of Deep Neural Networks
Mete Ozay
ODL
16
1
0
22 May 2019
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
23
94
0
24 Jan 2019
Understanding Geometry of Encoder-Decoder CNNs
Understanding Geometry of Encoder-Decoder CNNs
J. C. Ye
Woon Kyoung Sung
3DV
AI4CE
11
72
0
22 Jan 2019
Convex Relaxations of Convolutional Neural Nets
Convex Relaxations of Convolutional Neural Nets
Burak Bartan
Mert Pilanci
20
5
0
31 Dec 2018
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Henning Petzka
C. Sminchisescu
29
9
0
16 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU
  Networks
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
33
446
0
21 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,125
0
09 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
26
191
0
29 Oct 2018
Subgradient Descent Learns Orthogonal Dictionaries
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
20
51
0
25 Oct 2018
Small ReLU networks are powerful memorizers: a tight analysis of
  memorization capacity
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
28
117
0
17 Oct 2018
Learning Two-layer Neural Networks with Symmetric Inputs
Learning Two-layer Neural Networks with Symmetric Inputs
Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
OOD
MLT
36
57
0
16 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets
  v.s. their Induced Kernel
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
26
245
0
12 Oct 2018
Why do Larger Models Generalize Better? A Theoretical Perspective via
  the XOR Problem
Why do Larger Models Generalize Better? A Theoretical Perspective via the XOR Problem
Alon Brutzkus
Amir Globerson
MLT
13
7
0
06 Oct 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural
  Networks
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
27
281
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
56
1,252
0
04 Oct 2018
A theoretical framework for deep locally connected ReLU network
A theoretical framework for deep locally connected ReLU network
Yuandong Tian
PINN
25
10
0
28 Sep 2018
12
Next