Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.00779
Cited By
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima
3 December 2017
S. Du
J. Lee
Yuandong Tian
Barnabás Póczós
Aarti Singh
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima"
50 / 64 papers shown
Title
System Identification and Control Using Lyapunov-Based Deep Neural Networks without Persistent Excitation: A Concurrent Learning Approach
Rebecca G. Hart
Omkar Sudhir Patil
Zachary I. Bell
Warren E. Dixon
14
0
0
15 May 2025
Analysis of the rate of convergence of an over-parametrized convolutional neural network image classifier learned by gradient descent
Michael Kohler
A. Krzyżak
Benjamin Walter
36
1
0
13 May 2024
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
46
4
0
12 Mar 2024
Analysis of the expected
L
2
L_2
L
2
error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
36
3
0
24 Nov 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Towards Theoretically Inspired Neural Initialization Optimization
Yibo Yang
Hong Wang
Haobo Yuan
Zhouchen Lin
29
9
0
12 Oct 2022
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
26
1
0
01 Mar 2022
Understanding Deep Contrastive Learning via Coordinate-wise Optimization
Yuandong Tian
52
34
0
29 Jan 2022
Mode connectivity in the loss landscape of parameterized quantum circuits
Kathleen E. Hamilton
E. Lynn
R. Pooser
29
3
0
09 Nov 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
31
13
0
12 Oct 2021
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks: A Tale of Symmetry II
Yossi Arjevani
M. Field
28
18
0
21 Jul 2021
Continual Learning in the Teacher-Student Setup: Impact of Task Similarity
Sebastian Lee
Sebastian Goldt
Andrew M. Saxe
CLL
32
73
0
09 Jul 2021
Neural Active Learning with Performance Guarantees
Pranjal Awasthi
Christoph Dann
Claudio Gentile
Ayush Sekhari
Zhilei Wang
29
22
0
06 Jun 2021
From Local Pseudorandom Generators to Hardness of Learning
Amit Daniely
Gal Vardi
109
30
0
20 Jan 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Computational Separation Between Convolutional and Fully-Connected Networks
Eran Malach
Shai Shalev-Shwartz
24
26
0
03 Oct 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
21
42
0
21 Sep 2020
Nonparametric Learning of Two-Layer ReLU Residual Units
Zhunxuan Wang
Linyun He
Chunchuan Lyu
Shay B. Cohen
MLT
OffRL
33
1
0
17 Aug 2020
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
Adam R. Klivans
Frederic Koehler
19
5
0
25 Jul 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
Understanding and Improving Information Transfer in Multi-Task Learning
Sen Wu
Hongyang R. Zhang
Christopher Ré
18
154
0
02 May 2020
Orthogonal Over-Parameterized Training
Weiyang Liu
Rongmei Lin
Zhen Liu
James M. Rehg
Liam Paull
Li Xiong
Le Song
Adrian Weller
32
41
0
09 Apr 2020
Symmetry & critical points for a model shallow neural network
Yossi Arjevani
M. Field
34
13
0
23 Mar 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
16
4
0
22 Feb 2020
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
27
21
0
23 Jan 2020
Thresholds of descending algorithms in inference problems
Stefano Sarao Mannelli
Lenka Zdeborova
AI4CE
24
4
0
02 Jan 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Naive Gabor Networks for Hyperspectral Image Classification
Chenying Liu
Jun Li
Lin He
Antonio J. Plaza
Shutao Li
Bo Li
37
45
0
09 Dec 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
42
51
0
24 Jul 2019
Recursive Sketches for Modular Deep Learning
Badih Ghazi
Rina Panigrahy
Joshua R. Wang
13
20
0
29 May 2019
Fine-grained Optimization of Deep Neural Networks
Mete Ozay
ODL
16
1
0
22 May 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
23
94
0
24 Jan 2019
Understanding Geometry of Encoder-Decoder CNNs
J. C. Ye
Woon Kyoung Sung
3DV
AI4CE
11
72
0
22 Jan 2019
Convex Relaxations of Convolutional Neural Nets
Burak Bartan
Mert Pilanci
20
5
0
31 Dec 2018
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Henning Petzka
C. Sminchisescu
29
9
0
16 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
33
446
0
21 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,125
0
09 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
26
191
0
29 Oct 2018
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
20
51
0
25 Oct 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
28
117
0
17 Oct 2018
Learning Two-layer Neural Networks with Symmetric Inputs
Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
OOD
MLT
36
57
0
16 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
26
245
0
12 Oct 2018
Why do Larger Models Generalize Better? A Theoretical Perspective via the XOR Problem
Alon Brutzkus
Amir Globerson
MLT
13
7
0
06 Oct 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
27
281
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
56
1,252
0
04 Oct 2018
A theoretical framework for deep locally connected ReLU network
Yuandong Tian
PINN
25
10
0
28 Sep 2018
1
2
Next