ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.00716
  4. Cited By
Convolutional Phase Retrieval via Gradient Descent

Convolutional Phase Retrieval via Gradient Descent

3 December 2017
Qing Qu
Yuqian Zhang
Yonina C. Eldar
John N. Wright
ArXivPDFHTML

Papers citing "Convolutional Phase Retrieval via Gradient Descent"

9 / 9 papers shown
Title
Spectral Methods for Data Science: A Statistical Perspective
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
42
165
0
15 Dec 2020
Low-Rank Matrix Recovery with Scaled Subgradient Methods: Fast and
  Robust Convergence Without the Condition Number
Low-Rank Matrix Recovery with Scaled Subgradient Methods: Fast and Robust Convergence Without the Condition Number
Tian Tong
Cong Ma
Yuejie Chi
21
55
0
26 Oct 2020
Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex
  Optimization
Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex Optimization
Jun-Kun Wang
Jacob D. Abernethy
11
7
0
04 Oct 2020
Uncertainty quantification for nonconvex tensor completion: Confidence
  intervals, heteroscedasticity and optimality
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai
H. Vincent Poor
Yuxin Chen
13
23
0
15 Jun 2020
Depth Descent Synchronization in $\mathrm{SO}(D)$
Depth Descent Synchronization in SO(D)\mathrm{SO}(D)SO(D)
Tyler Maunu
Gilad Lerman
MDE
37
2
0
13 Feb 2020
Subgradient Descent Learns Orthogonal Dictionaries
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
20
51
0
25 Oct 2018
Structured Local Optima in Sparse Blind Deconvolution
Structured Local Optima in Sparse Blind Deconvolution
Yuqian Zhang
Han-Wen Kuo
John N. Wright
26
56
0
01 Jun 2018
How Many Samples are Needed to Estimate a Convolutional or Recurrent
  Neural Network?
How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?
S. Du
Yining Wang
Xiyu Zhai
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Aarti Singh
SSL
21
57
0
21 May 2018
The Global Optimization Geometry of Shallow Linear Neural Networks
The Global Optimization Geometry of Shallow Linear Neural Networks
Zhihui Zhu
Daniel Soudry
Yonina C. Eldar
M. Wakin
ODL
18
36
0
13 May 2018
1