Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.00409
Cited By
Deep Learning Scaling is Predictable, Empirically
1 December 2017
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning Scaling is Predictable, Empirically"
50 / 386 papers shown
Title
Human-Algorithm Collaboration: Achieving Complementarity and Avoiding Unfairness
Kate Donahue
Alexandra Chouldechova
K. Kenthapadi
FaML
FedML
52
50
0
17 Feb 2022
Compute Trends Across Three Eras of Machine Learning
J. Sevilla
Lennart Heim
A. Ho
T. Besiroglu
Marius Hobbhahn
Pablo Villalobos
39
269
0
11 Feb 2022
Failure and success of the spectral bias prediction for Kernel Ridge Regression: the case of low-dimensional data
Umberto M. Tomasini
Antonio Sclocchi
M. Wyart
15
12
0
07 Feb 2022
DASHA: Distributed Nonconvex Optimization with Communication Compression, Optimal Oracle Complexity, and No Client Synchronization
A. Tyurin
Peter Richtárik
41
18
0
02 Feb 2022
Reducing the Amount of Real World Data for Object Detector Training with Synthetic Data
Sven Burdorf
Karoline Plum
Daniel Hasenklever
18
4
0
31 Jan 2022
Error Scaling Laws for Kernel Classification under Source and Capacity Conditions
Hugo Cui
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
46
10
0
29 Jan 2022
A Transferable Approach for Partitioning Machine Learning Models on Multi-Chip-Modules
Xinfeng Xie
Prakash Prabhu
Ulysse Beaugnon
P. Phothilimthana
Sudip Roy
Azalia Mirhoseini
E. Brevdo
James Laudon
Yanqi Zhou
30
5
0
07 Dec 2021
Models of fairness in federated learning
Kate Donahue
Jon M. Kleinberg
FedML
60
9
0
01 Dec 2021
AugLiChem: Data Augmentation Library of Chemical Structures for Machine Learning
Rishikesh Magar
Yuyang Wang
Cooper Lorsung
Chen Liang
Hariharan Ramasubramanian
Peiyuan Li
A. Farimani
28
27
0
30 Nov 2021
Turing-Universal Learners with Optimal Scaling Laws
Preetum Nakkiran
29
2
0
09 Nov 2021
Learning curves for Gaussian process regression with power-law priors and targets
Hui Jin
P. Banerjee
Guido Montúfar
14
17
0
23 Oct 2021
The Dangers of Underclaiming: Reasons for Caution When Reporting How NLP Systems Fail
Sam Bowman
OffRL
24
45
0
15 Oct 2021
Training Deep Neural Networks with Joint Quantization and Pruning of Weights and Activations
Xinyu Zhang
Ian Colbert
Ken Kreutz-Delgado
Srinjoy Das
MQ
32
11
0
15 Oct 2021
Scaling Laws for the Few-Shot Adaptation of Pre-trained Image Classifiers
Gabriele Prato
Simon Guiroy
Ethan Caballero
Irina Rish
Sarath Chandar
VLM
34
11
0
13 Oct 2021
RankingMatch: Delving into Semi-Supervised Learning with Consistency Regularization and Ranking Loss
Trung Q. Tran
Mingu Kang
Daeyoung Kim
16
2
0
09 Oct 2021
Unsupervised Selective Labeling for More Effective Semi-Supervised Learning
Xudong Wang
Long Lian
Stella X. Yu
194
33
0
06 Oct 2021
Max and Coincidence Neurons in Neural Networks
Albert Lee
Kang L. Wang
6
1
0
04 Oct 2021
Noise2Recon: Enabling Joint MRI Reconstruction and Denoising with Semi-Supervised and Self-Supervised Learning
Arjun D Desai
Batu Mehmet Ozturkler
Christopher M. Sandino
R. Boutin
M. Willis
S. Vasanawala
B. Hargreaves
Christopher Ré
John M. Pauly
Akshay S. Chaudhari
27
3
0
30 Sep 2021
Robust Temporal Ensembling for Learning with Noisy Labels
Abel Brown
Benedikt Schifferer
R. DiPietro
NoLa
OOD
14
0
0
29 Sep 2021
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
186
276
0
28 Sep 2021
Is the Number of Trainable Parameters All That Actually Matters?
A. Chatelain
Amine Djeghri
Daniel Hesslow
Julien Launay
Iacopo Poli
51
7
0
24 Sep 2021
Scaling Laws for Neural Machine Translation
Behrooz Ghorbani
Orhan Firat
Markus Freitag
Ankur Bapna
M. Krikun
Xavier Garcia
Ciprian Chelba
Colin Cherry
40
99
0
16 Sep 2021
Formalizing and Estimating Distribution Inference Risks
Anshuman Suri
David Evans
MIACV
45
51
0
13 Sep 2021
Compute and Energy Consumption Trends in Deep Learning Inference
Radosvet Desislavov
Fernando Martínez-Plumed
José Hernández-Orallo
35
113
0
12 Sep 2021
Why and How Governments Should Monitor AI Development
Jess Whittlestone
Jack Clark
35
30
0
28 Aug 2021
A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your Pre-training Effective?
Hiroaki Mikami
Kenji Fukumizu
Shogo Murai
Shuji Suzuki
Yuta Kikuchi
Taiji Suzuki
S. Maeda
Kohei Hayashi
40
12
0
25 Aug 2021
Scalable Bayesian transport maps for high-dimensional non-Gaussian spatial fields
Matthias Katzfuss
Florian Schafer
OT
32
14
0
09 Aug 2021
On The State of Data In Computer Vision: Human Annotations Remain Indispensable for Developing Deep Learning Models
Z. Emam
Andrew Kondrich
Sasha Harrison
Felix Lau
Yushi Wang
Aerin Kim
E. Branson
VLM
38
11
0
31 Jul 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
231
0
27 Jul 2021
Learning to Limit Data Collection via Scaling Laws: A Computational Interpretation for the Legal Principle of Data Minimization
Divya Shanmugam
Samira Shabanian
Fernando Diaz
Michèle Finck
Joanna Biega
8
18
0
16 Jul 2021
A Dual-Purpose Deep Learning Model for Auscultated Lung and Tracheal Sound Analysis Based on Mixed Set Training
Fu-Shun Hsu
Shang-Ran Huang
Chang-Fu Su
Chien-Wen Huang
Yuan-Ren Cheng
...
Nian-Jhen Lin
Wan-Ling Tsai
Ching-Shiang Lu
Chuan Chen
F. Lai
29
5
0
09 Jul 2021
Structured Model Pruning of Convolutional Networks on Tensor Processing Units
Kongtao Chen
Ken Franko
Ruoxin Sang
CVBM
11
59
0
09 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
34
1
0
05 Jul 2021
Hi-BEHRT: Hierarchical Transformer-based model for accurate prediction of clinical events using multimodal longitudinal electronic health records
Yikuan Li
M. Mamouei
G. Salimi-Khorshidi
Shishir Rao
A. Hassaine
D. Canoy
Thomas Lukasiewicz
K. Rahimi
26
76
0
21 Jun 2021
Data Optimisation for a Deep Learning Recommender System
Gustav Hertz
Sandhya Sachidanandan
Balázs Tóth
Emil S. Jørgensen
Martin Tegnér
22
0
0
21 Jun 2021
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
30
31
0
16 Jun 2021
Towards Costless Model Selection in Contextual Bandits: A Bias-Variance Perspective
Sanath Kumar Krishnamurthy
Adrienne Margaret Propp
Susan Athey
25
3
0
11 Jun 2021
Redundant representations help generalization in wide neural networks
Diego Doimo
Aldo Glielmo
Sebastian Goldt
Alessandro Laio
AI4CE
33
9
0
07 Jun 2021
Self-Supervision is All You Need for Solving Rubik's Cube
Kyo Takano
15
1
0
06 Jun 2021
Search Spaces for Neural Model Training
Darko Stosic
Dusan Stosic
28
4
0
27 May 2021
A Theoretical-Empirical Approach to Estimating Sample Complexity of DNNs
Devansh Bisla
Apoorva Nandini Saridena
A. Choromańska
30
8
0
05 May 2021
Accelerating Sparse Deep Neural Networks
Asit K. Mishra
J. Latorre
Jeff Pool
Darko Stosic
Dusan Stosic
Ganesh Venkatesh
Chong Yu
Paulius Micikevicius
22
221
0
16 Apr 2021
Scaling Scaling Laws with Board Games
Andrew Jones
8
39
0
07 Apr 2021
Vulnerability Due to Training Order in Split Learning
Harshit Madaan
M. Gawali
V. Kulkarni
Aniruddha Pant
FedML
24
6
0
26 Mar 2021
UNICORN on RAINBOW: A Universal Commonsense Reasoning Model on a New Multitask Benchmark
Nicholas Lourie
Ronan Le Bras
Chandra Bhagavatula
Yejin Choi
LRM
30
137
0
24 Mar 2021
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
18
122
0
19 Mar 2021
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
27
109
0
18 Mar 2021
Is it enough to optimize CNN architectures on ImageNet?
Lukas Tuggener
Jürgen Schmidhuber
Thilo Stadelmann
33
23
0
16 Mar 2021
Revisiting ResNets: Improved Training and Scaling Strategies
Irwan Bello
W. Fedus
Xianzhi Du
E. D. Cubuk
A. Srinivas
Nayeon Lee
Jonathon Shlens
Barret Zoph
29
298
0
13 Mar 2021
Integration of Convolutional Neural Networks in Mobile Applications
Roger Creus Castanyer
Silverio Martínez-Fernández
Xavier Franch
29
12
0
11 Mar 2021
Previous
1
2
3
4
5
6
7
8
Next