ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.10765
  4. Cited By
Learning nonlinear state-space models using smooth particle-filter-based
  likelihood approximations

Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations

29 November 2017
Andreas Svensson
Fredrik Lindsten
Thomas B. Schon
ArXivPDFHTML

Papers citing "Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations"

6 / 6 papers shown
Title
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
111
210
0
25 May 2017
On the construction of probabilistic Newton-type algorithms
On the construction of probabilistic Newton-type algorithms
A. Wills
Thomas B. Schon
33
13
0
05 Apr 2017
Learning of state-space models with highly informative observations: a
  tempered Sequential Monte Carlo solution
Learning of state-space models with highly informative observations: a tempered Sequential Monte Carlo solution
Andreas Svensson
Thomas B. Schon
Fredrik Lindsten
39
17
0
06 Feb 2017
Probabilistic Line Searches for Stochastic Optimization
Probabilistic Line Searches for Stochastic Optimization
Maren Mahsereci
Philipp Hennig
ODL
45
126
0
10 Feb 2015
Nested Sequential Monte Carlo Methods
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
398
84
0
09 Feb 2015
Particle filter-based Gaussian process optimisation for parameter
  inference
Particle filter-based Gaussian process optimisation for parameter inference
J. Dahlin
Fredrik Lindsten
GP
48
20
0
04 Nov 2013
1