Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.10456
Cited By
Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent
28 November 2017
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent"
43 / 43 papers shown
Title
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Tianlin Li
Tian Xie
62
0
0
26 Feb 2025
Grams: Gradient Descent with Adaptive Momentum Scaling
Yang Cao
Xiaoyu Li
Zhao-quan Song
ODL
98
2
0
22 Dec 2024
Cautious Optimizers: Improving Training with One Line of Code
Kaizhao Liang
Lizhang Chen
B. Liu
Qiang Liu
ODL
108
5
0
25 Nov 2024
Comparisons Are All You Need for Optimizing Smooth Functions
Chenyi Zhang
Tongyang Li
AAML
37
1
0
19 May 2024
Beyond first-order methods for non-convex non-concave min-max optimization
Abhijeet Vyas
Brian Bullins
23
1
0
17 Apr 2023
A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization
Chuan He
Heng Huang
Zhaosong Lu
16
1
0
10 Jan 2023
Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent
Marco Bornstein
Jin-Peng Liu
Jingling Li
Furong Huang
21
0
0
17 Nov 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
32
7
0
04 Oct 2022
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
26
17
0
15 Jun 2022
An Adaptive Gradient Method with Energy and Momentum
Hailiang Liu
Xuping Tian
ODL
18
9
0
23 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
28
8
0
18 Feb 2022
Differentially Private Temporal Difference Learning with Stochastic Nonconvex-Strongly-Concave Optimization
Canzhe Zhao
Yanjie Ze
Jing Dong
Baoxiang Wang
Shuai Li
47
4
0
25 Jan 2022
Adaptive Gaussian Process based Stochastic Trajectory Optimization for Motion Planning
Yichang Feng
Haiyun Zhang
Jin Wang
Guodong Lu
33
30
0
30 Dec 2021
Escape saddle points by a simple gradient-descent based algorithm
Chenyi Zhang
Tongyang Li
ODL
25
15
0
28 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
38
1
0
25 Oct 2021
On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport
Minhui Huang
Shiqian Ma
Lifeng Lai
29
3
0
29 Sep 2021
Majorization Minimization Methods for Distributed Pose Graph Optimization
Taosha Fan
Todd D. Murphey
34
18
0
30 Jul 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Escaping Saddle Points with Compressed SGD
Dmitrii Avdiukhin
G. Yaroslavtsev
16
4
0
21 May 2021
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
27
11
0
10 Oct 2020
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
21
178
0
01 Sep 2020
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
16
2
0
23 Mar 2020
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
19
21
0
23 Jan 2020
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
20
21
0
19 Aug 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Kaipeng Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
38
186
0
19 Jun 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
Junzhe Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
442
0
28 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
33
0
01 May 2019
Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources
Yanghua Peng
Hang Zhang
Yifei Ma
Tong He
Zhi-Li Zhang
Sheng Zha
Mu Li
22
23
0
26 Apr 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
26
3
0
21 Jan 2019
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
41
570
0
04 Jul 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
29
97
0
14 Jun 2018
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurelien Lucchi
Thomas Hofmann
21
161
0
15 Mar 2018
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form
Srinadh Bhojanapalli
Nicolas Boumal
Prateek Jain
Praneeth Netrapalli
23
42
0
01 Mar 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
44
1,019
0
13 Feb 2018
On Symplectic Optimization
M. Betancourt
Michael I. Jordan
Ashia Wilson
16
90
0
10 Feb 2018
NEON+: Accelerated Gradient Methods for Extracting Negative Curvature for Non-Convex Optimization
Yi Tian Xu
R. L. Jin
Tianbao Yang
32
25
0
04 Dec 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
31
200
0
20 Jul 2017
Stochastic Heavy Ball
S. Gadat
Fabien Panloup
Sofiane Saadane
15
103
0
14 Sep 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
31
18
0
12 Sep 2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
108
1,154
0
04 Mar 2015
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1