ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.10455
  4. Cited By
Backprop as Functor: A compositional perspective on supervised learning

Backprop as Functor: A compositional perspective on supervised learning

28 November 2017
Brendan Fong
David I. Spivak
Rémy Tuyéras
ArXivPDFHTML

Papers citing "Backprop as Functor: A compositional perspective on supervised learning"

12 / 12 papers shown
Title
Accelerating Machine Learning Systems via Category Theory: Applications to Spherical Attention for Gene Regulatory Networks
Accelerating Machine Learning Systems via Category Theory: Applications to Spherical Attention for Gene Regulatory Networks
Vincent Abbott
Kotaro Kamiya
Gerard Glowacki
Yu Atsumi
Gioele Zardini
Yoshihiro Maruyama
29
0
0
14 May 2025
Deep Learning with Parametric Lenses
Deep Learning with Parametric Lenses
Geoffrey S. H. Cruttwell
Bruno Gavranović
Neil Ghani
Paul W. Wilson
Fabio Zanasi
33
2
0
30 Mar 2024
Active Inference in String Diagrams: A Categorical Account of Predictive
  Processing and Free Energy
Active Inference in String Diagrams: A Categorical Account of Predictive Processing and Free Energy
Sean Tull
Johannes Kleiner
T. S. C. Smithe
AI4CE
32
0
0
01 Aug 2023
Generalized Optimization: A First Step Towards Category Theoretic
  Learning Theory
Generalized Optimization: A First Step Towards Category Theoretic Learning Theory
Dan Shiebler
29
2
0
20 Sep 2021
Categorical composable cryptography
Categorical composable cryptography
Anne Broadbent
M. Karvonen
26
7
0
12 May 2021
Categorical Foundations of Gradient-Based Learning
Categorical Foundations of Gradient-Based Learning
Geoffrey S. H. Cruttwell
Bruno Gavranović
Neil Ghani
Paul W. Wilson
Fabio Zanasi
FedML
17
70
0
02 Mar 2021
Reverse Derivative Ascent: A Categorical Approach to Learning Boolean
  Circuits
Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits
Paul W. Wilson
Fabio Zanasi
41
15
0
26 Jan 2021
Learning Functors using Gradient Descent
Learning Functors using Gradient Descent
Bruno Gavranovic
11
5
0
15 Sep 2020
Smart Choices and the Selection Monad
Smart Choices and the Selection Monad
M. Abadi
G. Plotkin
10
3
0
17 Jul 2020
Optimizing Neural Networks via Koopman Operator Theory
Optimizing Neural Networks via Koopman Operator Theory
Akshunna S. Dogra
William T. Redman
11
49
0
03 Jun 2020
Lenses and Learners
Lenses and Learners
Brendan Fong
Michael Johnson
9
24
0
05 Mar 2019
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1