ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.07695
  4. Cited By
Fully Convolutional Neural Networks for Page Segmentation of Historical
  Document Images

Fully Convolutional Neural Networks for Page Segmentation of Historical Document Images

21 November 2017
C. Wick
F. Puppe
    SSeg
ArXivPDFHTML

Papers citing "Fully Convolutional Neural Networks for Page Segmentation of Historical Document Images"

5 / 5 papers shown
Title
DocBed: A Multi-Stage OCR Solution for Documents with Complex Layouts
DocBed: A Multi-Stage OCR Solution for Documents with Complex Layouts
Wenzhen Zhu
Negin Sokhandan
Guang Yang
Sujitha Martin
S. Sathyanarayana
26
15
0
03 Feb 2022
Document AI: Benchmarks, Models and Applications
Document AI: Benchmarks, Models and Applications
Lei Cui
Yiheng Xu
Tengchao Lv
Furu Wei
VLM
24
70
0
16 Nov 2021
Multi-Modal Association based Grouping for Form Structure Extraction
Multi-Modal Association based Grouping for Form Structure Extraction
Milan Aggarwal
Mausoom Sarkar
Hiresh Gupta
Balaji Krishnamurthy
19
10
0
09 Jul 2021
VSR: A Unified Framework for Document Layout Analysis combining Vision,
  Semantics and Relations
VSR: A Unified Framework for Document Layout Analysis combining Vision, Semantics and Relations
Peng Zhang
Can Li
Liang Qiao
Zhanzhan Cheng
Shiliang Pu
Yi Niu
Fei Wu
31
57
0
13 May 2021
Attend, Copy, Parse -- End-to-end information extraction from documents
Attend, Copy, Parse -- End-to-end information extraction from documents
Rasmus Berg Palm
Florian Laws
Ole Winther
19
58
0
18 Dec 2018
1