Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.06598
Cited By
How Wrong Am I? - Studying Adversarial Examples and their Impact on Uncertainty in Gaussian Process Machine Learning Models
17 November 2017
Kathrin Grosse
David Pfaff
M. Smith
Michael Backes
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Wrong Am I? - Studying Adversarial Examples and their Impact on Uncertainty in Gaussian Process Machine Learning Models"
9 / 9 papers shown
Title
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
101
2,142
0
21 Aug 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
85
171
0
08 Jul 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
103
1,851
0
20 May 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
67
555
0
11 Apr 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
62
710
0
21 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
290
1,849
0
03 Feb 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
120
1,727
0
08 Nov 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
198
935
0
21 Oct 2016
Adversarial Perturbations Against Deep Neural Networks for Malware Classification
Kathrin Grosse
Nicolas Papernot
Praveen Manoharan
Michael Backes
Patrick McDaniel
AAML
44
418
0
14 Jun 2016
1