ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.06064
  4. Cited By
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in
  Large-Scale Distributed Cooperative Perception

Gaussian Process Decentralized Data Fusion Meets Transfer Learning in Large-Scale Distributed Cooperative Perception

16 November 2017
Ruofei Ouyang
K. H. Low
    FedML
ArXivPDFHTML

Papers citing "Gaussian Process Decentralized Data Fusion Meets Transfer Learning in Large-Scale Distributed Cooperative Perception"

12 / 12 papers shown
Title
Bayesian Optimization under Stochastic Delayed Feedback
Bayesian Optimization under Stochastic Delayed Feedback
Arun Verma
Zhongxiang Dai
Bryan Kian Hsiang Low
9
12
0
19 Jun 2022
Fault-Tolerant Federated Reinforcement Learning with Theoretical
  Guarantee
Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee
Flint Xiaofeng Fan
Yining Ma
Zhongxiang Dai
Wei Jing
Cheston Tan
K. H. Low
FedML
AI4CE
11
78
0
26 Oct 2021
Fully probabilistic design for knowledge fusion between Bayesian filters
  under uniform disturbances
Fully probabilistic design for knowledge fusion between Bayesian filters under uniform disturbances
L. Pavelková
L. Jirsa
A. Quinn
11
2
0
22 Sep 2021
Convolutional Normalizing Flows for Deep Gaussian Processes
Convolutional Normalizing Flows for Deep Gaussian Processes
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
25
6
0
17 Apr 2021
Variational Bayesian Unlearning
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
27
121
0
24 Oct 2020
Private Outsourced Bayesian Optimization
Private Outsourced Bayesian Optimization
D. Kharkovskii
Zhongxiang Dai
K. H. Low
12
21
0
24 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
89
109
0
20 Oct 2020
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret
  Learning in Games
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games
Zhongxiang Dai
Yizhou Chen
K. H. Low
Patrick Jaillet
Teck-Hua Ho
6
26
0
30 Jun 2020
Nonmyopic Gaussian Process Optimization with Macro-Actions
Nonmyopic Gaussian Process Optimization with Macro-Actions
D. Kharkovskii
Chun Kai Ling
K. H. Low
4
16
0
22 Feb 2020
Implicit Posterior Variational Inference for Deep Gaussian Processes
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
19
42
0
26 Oct 2019
Large-scale Heteroscedastic Regression via Gaussian Process
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
21
26
0
03 Nov 2018
Stochastic Variational Inference for Bayesian Sparse Gaussian Process
  Regression
Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
Haibin Yu
T. Hoang
K. H. Low
Patrick Jaillet
BDL
50
24
0
01 Nov 2017
1