Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.05189
Cited By
CryptoDL: Deep Neural Networks over Encrypted Data
14 November 2017
Ehsan Hesamifard
Hassan Takabi
Mehdi Ghasemi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"CryptoDL: Deep Neural Networks over Encrypted Data"
50 / 74 papers shown
Title
Privacy-Preserving Chest X-ray Classification in Latent Space with Homomorphically Encrypted Neural Inference
Jonghun Kim
Gyeongdeok Jo
Shinyoung Ra
Hyunjin Park
28
0
0
18 Jun 2025
Privacy-preserving Machine Learning in Internet of Vehicle Applications: Fundamentals, Recent Advances, and Future Direction
Nazmul Islam
Mohammad Zulkernine
82
0
0
03 Mar 2025
Flash: A Hybrid Private Inference Protocol for Deep CNNs with High Accuracy and Low Latency on CPU
H. Roh
Jinsu Yeo
Yeongil Ko
Gu-Yeon Wei
David Brooks
Woo-Seok Choi
176
2
0
20 Jan 2025
MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference
Parsa Ghazvinian
Robert Podschwadt
Prajwal Panzade
Mohammad H. Rafiei
Daniel Takabi
109
0
0
10 Dec 2024
DCT-CryptoNets: Scaling Private Inference in the Frequency Domain
Arjun Roy
Kaushik Roy
431
1
0
27 Aug 2024
Counter Denial of Service for Next-Generation Networks within the Artificial Intelligence and Post-Quantum Era
Saleh Darzi
Attila A. Yavuz
AAML
89
3
0
08 Aug 2024
Privacy-Preserving Logistic Regression Training on Large Datasets
John Chiang
138
2
0
19 Jun 2024
Homomorphic WiSARDs: Efficient Weightless Neural Network training over encrypted data
Leonardo Neumann
Antonio Guimarães
Diego F. Aranha
Edson Borin
AAML
52
0
0
29 Mar 2024
Converting Transformers to Polynomial Form for Secure Inference Over Homomorphic Encryption
Itamar Zimerman
Moran Baruch
Nir Drucker
Gilad Ezov
Omri Soceanu
Lior Wolf
90
17
0
15 Nov 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
109
28
0
20 Jul 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
156
49
0
21 Feb 2023
Privacy-Preserving Collaborative Learning through Feature Extraction
A. Sarmadi
Hao Fu
Prashanth Krishnamurthy
S. Garg
Farshad Khorrami
FedML
56
7
0
13 Dec 2022
ezDPS: An Efficient and Zero-Knowledge Machine Learning Inference Pipeline
Haodi Wang
Thang Hoang
73
11
0
11 Dec 2022
Privacy Safe Representation Learning via Frequency Filtering Encoder
J. Jeong
Minyong Cho
Philipp Benz
Jinwoo Hwang
J. Kim
Seungkwang Lee
Tae-Hoon Kim
64
3
0
04 Aug 2022
Impala: Low-Latency, Communication-Efficient Private Deep Learning Inference
Woojin Choi
Brandon Reagen
Gu-Yeon Wei
David Brooks
FedML
85
7
0
13 May 2022
CECILIA: Comprehensive Secure Machine Learning Framework
Ali Burak Ünal
Nícolas Pfeifer
Mete Akgün
75
3
0
07 Feb 2022
SoK: Privacy-preserving Deep Learning with Homomorphic Encryption
Robert Podschwadt
Daniel Takabi
Peizhao Hu
FedML
98
6
0
23 Dec 2021
A methodology for training homomorphicencryption friendly neural networks
Moran Baruch
Nir Drucker
L. Greenberg
Guy Moshkowich
85
14
0
05 Nov 2021
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale
Karthik Garimella
N. Jha
Zahra Ghodsi
S. Garg
Brandon Reagen
84
3
0
04 Nov 2021
Physical Side-Channel Attacks on Embedded Neural Networks: A Survey
M. M. Real
Ruben Salvador
AAML
73
34
0
21 Oct 2021
Input-Output History Feedback Controller for Encrypted Control with Leveled Fully Homomorphic Encryption
K. Teranishi
T. Sadamoto
K. Kogiso
58
20
0
22 Sep 2021
Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework
Mohamed Bennai
Alberto Marchisio
Rachmad Vidya Wicaksana Putra
Muhammad Abdullah Hanif
98
34
0
20 Sep 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
88
106
0
10 Aug 2021
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial Activations in Privacy-Preserving Deep Learning
Karthik Garimella
N. Jha
Brandon Reagen
92
19
0
26 Jul 2021
Multitask Identity-Aware Image Steganography via Minimax Optimization
Jiabao Cui
Pengyi Zhang
Songyuan Li
Liangli Zheng
Cuizhu Bao
Jupeng Xia
Xi Li
64
12
0
13 Jul 2021
VeriDL: Integrity Verification of Outsourced Deep Learning Services (Extended Version)
Boxiang Dong
Bo Zhang
Hui
Wendy Hui Wang
36
8
0
01 Jul 2021
Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep Neural Network
Joon-Woo Lee
Hyungchul Kang
Yongwoo Lee
W. Choi
Jieun Eom
...
Eunsang Lee
Junghyun Lee
Donghoon Yoo
Young-Sik Kim
Jong-Seon No
95
252
0
14 Jun 2021
Precise Approximation of Convolutional Neural Networks for Homomorphically Encrypted Data
Junghyun Lee
Eunsang Lee
Joon-Woo Lee
Yongjune Kim
Young-Sik Kim
Jong-Seon No
139
58
0
23 May 2021
SIRNN: A Math Library for Secure RNN Inference
Deevashwer Rathee
Mayank Rathee
R. Goli
Divya Gupta
Rahul Sharma
Nishanth Chandran
Aseem Rastogi
62
111
0
10 May 2021
Enabling Inference Privacy with Adaptive Noise Injection
Sanjay Kariyappa
Ousmane Amadou Dia
Moinuddin K. Qureshi
69
5
0
06 Apr 2021
Enabling Homomorphically Encrypted Inference for Large DNN Models
Guillermo Lloret-Talavera
Marc Jordà
Harald Servat
Fabian Boemer
C. Chauhan
S. Tomishima
Nilesh N. Shah
Antonio J. Peña
AI4CE
FedML
111
27
0
30 Mar 2021
Security and Privacy for Artificial Intelligence: Opportunities and Challenges
Ayodeji Oseni
Nour Moustafa
Helge Janicke
Peng Liu
Z. Tari
A. Vasilakos
AAML
67
52
0
09 Feb 2021
Robust Machine Learning Systems: Challenges, Current Trends, Perspectives, and the Road Ahead
Mohamed Bennai
Mahum Naseer
T. Theocharides
C. Kyrkou
O. Mutlu
Lois Orosa
Jungwook Choi
OOD
139
101
0
04 Jan 2021
NN-EMD: Efficiently Training Neural Networks using Encrypted Multi-Sourced Datasets
Runhua Xu
J. Joshi
Chao Li
FedML
89
19
0
18 Dec 2020
Confidential Machine Learning on Untrusted Platforms: A Survey
Sagar Sharma
Keke Chen
FedML
55
15
0
15 Dec 2020
SoK: Training Machine Learning Models over Multiple Sources with Privacy Preservation
Lushan Song
Guopeng Lin
Jiaxuan Wang
Haoqi Wu
Wenqiang Ruan
Weili Han
155
9
0
06 Dec 2020
On Polynomial Approximations for Privacy-Preserving and Verifiable ReLU Networks
Ramy E. Ali
Jinhyun So
A. Avestimehr
57
36
0
11 Nov 2020
Privacy-Preserving XGBoost Inference
Xianrui Meng
J. Feigenbaum
74
14
0
09 Nov 2020
A Scalable Approach for Privacy-Preserving Collaborative Machine Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
78
53
0
03 Nov 2020
Key-Nets: Optical Transformation Convolutional Networks for Privacy Preserving Vision Sensors
J. Byrne
Brian DeCann
S. Bloom
PICV
38
5
0
11 Aug 2020
Computing Blindfolded on Data Homomorphically Encrypted under Multiple Keys: An Extended Survey
Asma Aloufi
Peizhao Hu
Yongsoo Song
Kristin E. Lauter
FedML
77
13
0
17 Jul 2020
SPEED: Secure, PrivatE, and Efficient Deep learning
Arnaud Grivet Sébert
Rafael Pinot
Martin Zuber
Cédric Gouy-Pailler
Renaud Sirdey
FedML
62
20
0
16 Jun 2020
Secure Byzantine-Robust Machine Learning
Lie He
Sai Praneeth Karimireddy
Martin Jaggi
OOD
81
60
0
08 Jun 2020
Cheetah: Optimizing and Accelerating Homomorphic Encryption for Private Inference
Brandon Reagen
Wooseok Choi
Yeongil Ko
Vincent T. Lee
Gu-Yeon Wei
Hsien-Hsin S. Lee
David Brooks
69
16
0
31 May 2020
Privacy in Deep Learning: A Survey
Fatemehsadat Mirshghallah
Mohammadkazem Taram
Praneeth Vepakomma
Abhishek Singh
Ramesh Raskar
H. Esmaeilzadeh
FedML
129
139
0
25 Apr 2020
A Review of Privacy-preserving Federated Learning for the Internet-of-Things
Christopher Briggs
Zhong Fan
Péter András
135
15
0
24 Apr 2020
Neural Network Laundering: Removing Black-Box Backdoor Watermarks from Deep Neural Networks
William Aiken
Hyoungshick Kim
Simon S. Woo
40
64
0
22 Apr 2020
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning
Sameer Wagh
Shruti Tople
Fabrice Benhamouda
E. Kushilevitz
Prateek Mittal
T. Rabin
FedML
112
304
0
05 Apr 2020
Edge Intelligence: Architectures, Challenges, and Applications
Dianlei Xu
Tong Li
Yong Li
Xiang Su
Sasu Tarkoma
Tao Jiang
Jon Crowcroft
Pan Hui
116
29
0
26 Mar 2020
Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy
Fatemehsadat Mireshghallah
Mohammadkazem Taram
A. Jalali
Ahmed T. Elthakeb
Dean Tullsen
H. Esmaeilzadeh
72
12
0
26 Mar 2020
1
2
Next