ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.04425
  4. Cited By
Message Passing Stein Variational Gradient Descent

Message Passing Stein Variational Gradient Descent

13 November 2017
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
ArXivPDFHTML

Papers citing "Message Passing Stein Variational Gradient Descent"

22 / 22 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
Flow Matching Ergodic Coverage
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
30
0
0
24 Apr 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
Accelerating Convergence of Stein Variational Gradient Descent via Deep
  Unfolding
Accelerating Convergence of Stein Variational Gradient Descent via Deep Unfolding
Yuya Kawamura
Satoshi Takabe
BDL
26
0
0
23 Feb 2024
Stein Variational Belief Propagation for Multi-Robot Coordination
Stein Variational Belief Propagation for Multi-Robot Coordination
Jana Pavlasek
J. Mah
Ruihan Xu
Odest Chadwicke Jenkins
Fabio Ramos
13
2
0
28 Nov 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle
  Stochastic Approximation
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
27
7
0
27 May 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
A Finite-Particle Convergence Rate for Stein Variational Gradient
  Descent
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
23
18
0
17 Nov 2022
Grassmann Stein Variational Gradient Descent
Grassmann Stein Variational Gradient Descent
Xingtu Liu
Harrison Zhu
Jean-François Ton
George Wynne
Andrew Duncan
23
12
0
07 Feb 2022
Low-rank variational Bayes correction to the Laplace method
Low-rank variational Bayes correction to the Laplace method
J. van Niekerk
Haavard Rue
BDL
13
13
0
25 Nov 2021
Relative Entropy Gradient Sampler for Unnormalized Distributions
Relative Entropy Gradient Sampler for Unnormalized Distributions
Xingdong Feng
Yuan Gao
Jian Huang
Yuling Jiao
Xu Liu
33
7
0
06 Oct 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
Federated Generalized Bayesian Learning via Distributed Stein
  Variational Gradient Descent
Federated Generalized Bayesian Learning via Distributed Stein Variational Gradient Descent
Rahif Kassab
Osvaldo Simeone
FedML
20
45
0
11 Sep 2020
Blindness of score-based methods to isolated components and mixing
  proportions
Blindness of score-based methods to isolated components and mixing proportions
Wenliang K. Li
Heishiro Kanagawa
15
34
0
23 Aug 2020
Stein Variational Gradient Descent With Matrix-Valued Kernels
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Chandrajit L. Bajaj
Qiang Liu
25
62
0
28 Oct 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of
  Non-linear Dynamics With Guaranteed Stability
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
23
136
0
09 Jun 2019
Stein Point Markov Chain Monte Carlo
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
107
324
0
09 Feb 2016
1