Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.04315
Cited By
A machine learning approach for efficient uncertainty quantification using multiscale methods
12 November 2017
Shing Chan
A. Elsheikh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A machine learning approach for efficient uncertainty quantification using multiscale methods"
9 / 9 papers shown
Title
Adaptive and Parallel Multiscale Framework for Modeling Cohesive Failure in Engineering Scale Systems
Sion Kim
Ezra Kissel
Karel Matous
AI4CE
32
1
0
18 Apr 2024
Uncertainty quantification of two-phase flow in porous media via coupled-TgNN surrogate model
Jun Yu Li
Dongxiao Zhang
Tianhao He
Q. Zheng
AI4CE
27
6
0
28 May 2022
Predicting Mechanically Driven Full-Field Quantities of Interest with Deep Learning-Based Metamodels
S. Mohammadzadeh
Emma Lejeune
AI4CE
28
28
0
24 Jul 2021
On generalized residue network for deep learning of unknown dynamical systems
Zhen Chen
D. Xiu
AI4CE
19
46
0
23 Jan 2020
Data-Driven Deep Learning of Partial Differential Equations in Modal Space
Kailiang Wu
D. Xiu
20
149
0
15 Oct 2019
Data Driven Governing Equations Approximation Using Deep Neural Networks
Tong Qin
Kailiang Wu
D. Xiu
PINN
34
270
0
13 Nov 2018
Data-driven polynomial chaos expansion for machine learning regression
Emiliano Torre
S. Marelli
P. Embrechts
Bruno Sudret
31
130
0
09 Aug 2018
Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
S. Mo
Yinhao Zhu
N. Zabaras
Xiaoqing Shi
Jichun Wu
AI4CE
16
272
0
02 Jul 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1