ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.03845
  4. Cited By
GPflowOpt: A Bayesian Optimization Library using TensorFlow

GPflowOpt: A Bayesian Optimization Library using TensorFlow

10 November 2017
Nicolas Knudde
J. Herten
T. Dhaene
Ivo Couckuyt
    GP
ArXivPDFHTML

Papers citing "GPflowOpt: A Bayesian Optimization Library using TensorFlow"

16 / 16 papers shown
Title
AutoML in Heavily Constrained Applications
AutoML in Heavily Constrained Applications
Felix Neutatz
Marius Lindauer
Ziawasch Abedjan
30
4
0
29 Jun 2023
OpenBox: A Python Toolkit for Generalized Black-box Optimization
OpenBox: A Python Toolkit for Generalized Black-box Optimization
Huaijun Jiang
Yu Shen
Yang Li
Beicheng Xu
Sixian Du
Wentao Zhang
Ce Zhang
Bin Cui
38
5
0
26 Apr 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
31
17
0
16 Feb 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional
  Bayesian Optimization
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
24
4
0
16 Feb 2023
Multi-Objective Hyperparameter Optimization in Machine Learning -- An
  Overview
Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview
Florian Karl
Tobias Pielok
Julia Moosbauer
Florian Pfisterer
Stefan Coors
...
Jakob Richter
Michel Lang
Eduardo C. Garrido-Merchán
Juergen Branke
B. Bischl
AI4CE
26
57
0
15 Jun 2022
Designing Robust Biotechnological Processes Regarding Variabilities
  using Multi-Objective Optimization Applied to a Biopharmaceutical Seed Train
  Design
Designing Robust Biotechnological Processes Regarding Variabilities using Multi-Objective Optimization Applied to a Biopharmaceutical Seed Train Design
T. H. Rodríguez
Anton Sekulic
Markus Lange-Hegermann
Björn Frahm
18
9
0
06 May 2022
Emulation of physical processes with Emukit
Emulation of physical processes with Emukit
Andrei Paleyes
Mark Pullin
Maren Mahsereci
Cliff McCollum
Neil D. Lawrence
Javier I. González
28
79
0
25 Oct 2021
Bayesian Optimization is Superior to Random Search for Machine Learning
  Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
30
289
0
20 Apr 2021
Revisiting Bayesian Optimization in the light of the COCO benchmark
Revisiting Bayesian Optimization in the light of the COCO benchmark
Rodolphe Le Riche
Victor Picheny
27
26
0
30 Mar 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
On Hyperparameter Optimization of Machine Learning Algorithms: Theory
  and Practice
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
Li Yang
Abdallah Shami
AI4CE
25
2,033
0
30 Jul 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Bayesian Optimization Meets Riemannian Manifolds in Robot Learning
Bayesian Optimization Meets Riemannian Manifolds in Robot Learning
Noémie Jaquier
Leonel Rozo
Sylvain Calinon
Mathias Bürger
17
53
0
11 Oct 2019
Learning search spaces for Bayesian optimization: Another view of
  hyperparameter transfer learning
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
27
96
0
27 Sep 2019
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
404
0
06 Mar 2017
1