Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.02637
Cited By
Safe Adaptive Importance Sampling
7 November 2017
Sebastian U. Stich
Anant Raj
Martin Jaggi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Safe Adaptive Importance Sampling"
15 / 15 papers shown
Title
Importance Sampling for Nonlinear Models
Prakash Palanivelu Rajmohan
Fred Roosta
7
0
0
18 May 2025
Recent Advances in Path Integral Control for Trajectory Optimization: An Overview in Theoretical and Algorithmic Perspectives
Muhammad Kazim
JunGee Hong
Min-Gyeom Kim
Kwang-Ki K. Kim
39
16
0
22 Sep 2023
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
24
6
0
27 Aug 2022
DELTA: Diverse Client Sampling for Fasting Federated Learning
Lung-Chuang Wang
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
23
22
0
27 May 2022
Characterizing & Finding Good Data Orderings for Fast Convergence of Sequential Gradient Methods
Amirkeivan Mohtashami
Sebastian U. Stich
Martin Jaggi
26
13
0
03 Feb 2022
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao
Lingxiao Wang
Mladen Kolar
Ziqi Liu
Qing Cui
Jun Zhou
Chaochao Chen
FedML
34
10
0
28 Dec 2021
Adaptive Importance Sampling meets Mirror Descent: a Bias-variance tradeoff
Anna Korba
Franccois Portier
28
12
0
29 Oct 2021
Federated Learning under Importance Sampling
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
18
52
0
14 Dec 2020
FairBatch: Batch Selection for Model Fairness
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
VLM
14
128
0
03 Dec 2020
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
42
191
0
26 Oct 2020
Optimal Importance Sampling for Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
40
46
0
26 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
Adaptive Sampling Distributed Stochastic Variance Reduced Gradient for Heterogeneous Distributed Datasets
Ilqar Ramazanli
Han Nguyen
Hai Pham
Sashank J. Reddi
Barnabás Póczós
23
11
0
20 Feb 2020
Accelerating Stochastic Gradient Descent Using Antithetic Sampling
Jingchang Liu
Linli Xu
19
2
0
07 Oct 2018
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
128
259
0
10 Dec 2012
1