Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.01847
Cited By
Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations
6 November 2017
M. Nonnenmacher
Srinivas C. Turaga
Jakob H. Macke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations"
5 / 5 papers shown
Title
Spectral learning of Bernoulli linear dynamical systems models
Iris R. Stone
Yotam Sagiv
Il Memming Park
Jonathan W. Pillow
40
1
0
03 Mar 2023
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
Feng Zhu
Andrew R. Sedler
Harrison A. Grier
Nauman Ahad
Mark A. Davenport
Matthew T. Kaufman
Andrea Giovannucci
C. Pandarinath
30
10
0
29 Oct 2021
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
55
87
0
09 Sep 2021
High-contrast "gaudy" images improve the training of deep neural network models of visual cortex
Benjamin R. Cowley
Jonathan W. Pillow
29
10
0
13 Jun 2020
Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
David Barrett
Ari S. Morcos
Jakob H. Macke
AI4CE
27
110
0
31 Oct 2018
1