ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.01791
  4. Cited By
HyperNetworks with statistical filtering for defending adversarial
  examples

HyperNetworks with statistical filtering for defending adversarial examples

6 November 2017
Zhun Sun
Mete Ozay
Takayuki Okatani
    AAML
ArXivPDFHTML

Papers citing "HyperNetworks with statistical filtering for defending adversarial examples"

21 / 21 papers shown
Title
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
75
73
0
07 Aug 2020
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,720
0
19 May 2017
On Detecting Adversarial Perturbations
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
59
948
0
14 Feb 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
65
239
0
19 Dec 2016
HyperNetworks
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
115
1,618
0
27 Sep 2016
Robustness of classifiers: from adversarial to random noise
Robustness of classifiers: from adversarial to random noise
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
54
374
0
31 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,885
0
08 Jul 2016
A Systematic Evaluation and Benchmark for Person Re-Identification:
  Features, Metrics, and Datasets
A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets
Srikrishna Karanam
Mengran Gou
Ziyan Wu
Angels Rates-Borras
Mario Sznaier
Richard J. Radke
78
58
0
31 May 2016
Improving the Robustness of Deep Neural Networks via Stability Training
Improving the Robustness of Deep Neural Networks via Stability Training
Stephan Zheng
Yang Song
Thomas Leung
Ian Goodfellow
OOD
42
637
0
15 Apr 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
60
3,672
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.7K
193,390
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
74
3,955
0
24 Nov 2015
Robust Convolutional Neural Networks under Adversarial Noise
Robust Convolutional Neural Networks under Adversarial Noise
Jonghoon Jin
Aysegül Dündar
Eugenio Culurciello
50
77
0
19 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
115
4,886
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
56
3,066
0
14 Nov 2015
Exploring the Space of Adversarial Images
Exploring the Space of Adversarial Images
Pedro Tabacof
Eduardo Valle
AAML
57
192
0
19 Oct 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
217
19,011
0
20 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
381
43,587
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.2K
100,202
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.3K
39,468
0
01 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
222
14,893
1
21 Dec 2013
1