ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.01634
  4. Cited By
Strategies for Conceptual Change in Convolutional Neural Networks
v1v2 (latest)

Strategies for Conceptual Change in Convolutional Neural Networks

5 November 2017
M. Grachten
Carlos Eduardo Cancino-Chacón
ArXiv (abs)PDFHTML

Papers citing "Strategies for Conceptual Change in Convolutional Neural Networks"

7 / 7 papers shown
Title
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
182
7,678
0
22 Sep 2015
Equilibrated adaptive learning rates for non-convex optimization
Equilibrated adaptive learning rates for non-convex optimization
Yann N. Dauphin
H. D. Vries
Yoshua Bengio
ODL
90
377
0
15 Feb 2015
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
134
12,272
0
19 Dec 2013
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
465
7,673
0
03 Jul 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
296
12,467
0
24 Jun 2012
Domain Adaptation for Statistical Classifiers
Domain Adaptation for Statistical Classifiers
Hal Daumé
D. Marcu
OOD
109
912
0
28 Sep 2011
Frustratingly Easy Domain Adaptation
Frustratingly Easy Domain Adaptation
Hal Daumé
128
1,800
0
10 Jul 2009
1