Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00867
Cited By
The (Un)reliability of saliency methods
2 November 2017
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The (Un)reliability of saliency methods"
48 / 148 papers shown
Title
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez
Alberto Lamas
Jules Sanchez
Gianni Franchi
Ivan Donadello
Siham Tabik
David Filliat
P. Cruz
Rosana Montes
Francisco Herrera
49
77
0
24 Apr 2021
On the Sensitivity and Stability of Model Interpretations in NLP
Fan Yin
Zhouxing Shi
Cho-Jui Hsieh
Kai-Wei Chang
FAtt
19
33
0
18 Apr 2021
Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset
Antonios Mamalakis
I. Ebert‐Uphoff
E. Barnes
OOD
28
75
0
18 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
23
57
0
25 Feb 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
33
22
0
14 Feb 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
24
63
0
18 Dec 2020
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
80
262
0
03 Dec 2020
Reflective-Net: Learning from Explanations
Johannes Schneider
Michalis Vlachos
FAtt
OffRL
LRM
57
18
0
27 Nov 2020
Now You See Me (CME): Concept-based Model Extraction
Dmitry Kazhdan
B. Dimanov
M. Jamnik
Pietro Lió
Adrian Weller
25
72
0
25 Oct 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
39
7
0
23 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
The elephant in the interpretability room: Why use attention as explanation when we have saliency methods?
Jasmijn Bastings
Katja Filippova
XAI
LRM
46
173
0
12 Oct 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
29
93
0
22 Sep 2020
A simple defense against adversarial attacks on heatmap explanations
Laura Rieger
Lars Kai Hansen
FAtt
AAML
33
37
0
13 Jul 2020
Usefulness of interpretability methods to explain deep learning based plant stress phenotyping
Koushik Nagasubramanian
Asheesh K. Singh
Arti Singh
S. Sarkar
Baskar Ganapathysubramanian
FAtt
19
16
0
11 Jul 2020
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
27
593
0
16 Jun 2020
Evolved Explainable Classifications for Lymph Node Metastases
Iam Palatnik de Sousa
M. Vellasco
E. C. Silva
19
6
0
14 May 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
33
218
0
01 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
41
371
0
30 Apr 2020
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
38
120
0
26 Mar 2020
Measuring and improving the quality of visual explanations
Agnieszka Grabska-Barwiñska
XAI
FAtt
21
3
0
14 Mar 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
30
143
0
10 Feb 2020
SAUNet: Shape Attentive U-Net for Interpretable Medical Image Segmentation
Jesse Sun
Fatemeh Darbeha
M. Zaidi
Bo Wang
AAML
19
110
0
21 Jan 2020
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
34
205
0
27 Oct 2019
Seeing What a GAN Cannot Generate
David Bau
Jun-Yan Zhu
Jonas Wulff
William S. Peebles
Hendrik Strobelt
Bolei Zhou
Antonio Torralba
GAN
48
308
0
24 Oct 2019
Semantics for Global and Local Interpretation of Deep Neural Networks
Jindong Gu
Volker Tresp
AI4CE
27
14
0
21 Oct 2019
Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey
Jérôme Rony
Soufiane Belharbi
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
25
70
0
08 Sep 2019
Saccader: Improving Accuracy of Hard Attention Models for Vision
Gamaleldin F. Elsayed
Simon Kornblith
Quoc V. Le
VLM
29
71
0
20 Aug 2019
Visual Interaction with Deep Learning Models through Collaborative Semantic Inference
Sebastian Gehrmann
Hendrik Strobelt
Robert Krüger
Hanspeter Pfister
Alexander M. Rush
HAI
21
57
0
24 Jul 2019
Incorporating Priors with Feature Attribution on Text Classification
Frederick Liu
Besim Avci
FAtt
FaML
31
120
0
19 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
A. Madry
OOD
AAML
24
63
0
03 Jun 2019
Certifiably Robust Interpretation in Deep Learning
Alexander Levine
Sahil Singla
S. Feizi
FAtt
AAML
23
63
0
28 May 2019
What Do Adversarially Robust Models Look At?
Takahiro Itazuri
Yoshihiro Fukuhara
Hirokatsu Kataoka
Shigeo Morishima
19
5
0
19 May 2019
Detecting inter-sectional accuracy differences in driver drowsiness detection algorithms
Mkhuseli Ngxande
J. Tapamo
Michael G. Burke
22
12
0
23 Apr 2019
Software and application patterns for explanation methods
Maximilian Alber
33
11
0
09 Apr 2019
Regression Concept Vectors for Bidirectional Explanations in Histopathology
Mara Graziani
Vincent Andrearczyk
Henning Muller
39
78
0
09 Apr 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
Lior Rokach
FAtt
TDI
19
86
0
06 Mar 2019
Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation
Sahil Singla
Eric Wallace
Shi Feng
S. Feizi
FAtt
18
59
0
01 Feb 2019
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
22
169
0
03 Dec 2018
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
21
2
0
09 Nov 2018
What made you do this? Understanding black-box decisions with sufficient input subsets
Brandon Carter
Jonas W. Mueller
Siddhartha Jain
David K Gifford
FAtt
37
77
0
09 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
64
1,928
0
08 Oct 2018
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
25
40
0
22 Jun 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
30
522
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
56
933
0
20 Jun 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
17
217
0
20 Mar 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
77
1,791
0
30 Nov 2017
Deep Learning Techniques for Music Generation -- A Survey
Jean-Pierre Briot
Gaëtan Hadjeres
F. Pachet
MGen
34
297
0
05 Sep 2017
Previous
1
2
3