ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00740
  4. Cited By
Learning to Represent Programs with Graphs

Learning to Represent Programs with Graphs

1 November 2017
Miltiadis Allamanis
Marc Brockschmidt
Mahmoud Khademi
    GNN
    NAI
ArXivPDFHTML

Papers citing "Learning to Represent Programs with Graphs"

38 / 138 papers shown
Title
Geometric graphs from data to aid classification tasks with graph
  convolutional networks
Geometric graphs from data to aid classification tasks with graph convolutional networks
Yifan Qian
P. Expert
P. Panzarasa
Mauricio Barahona
GNN
25
9
0
08 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
82
2,663
0
02 May 2020
Typilus: Neural Type Hints
Typilus: Neural Type Hints
Miltiadis Allamanis
Earl T. Barr
Soline Ducousso
Zheng Gao
35
131
0
06 Apr 2020
OptTyper: Probabilistic Type Inference by Optimising Logical and Natural
  Constraints
OptTyper: Probabilistic Type Inference by Optimising Logical and Natural Constraints
Irene Vlassi Pandi
Earl T. Barr
Andrew D. Gordon
Charles Sutton
22
29
0
01 Apr 2020
Code Prediction by Feeding Trees to Transformers
Code Prediction by Feeding Trees to Transformers
Seohyun Kim
Jinman Zhao
Yuchi Tian
S. Chandra
52
217
0
30 Mar 2020
ProGraML: Graph-based Deep Learning for Program Optimization and
  Analysis
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis
Chris Cummins
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Hugh Leather
88
56
0
23 Mar 2020
Incorporating Relational Background Knowledge into Reinforcement
  Learning via Differentiable Inductive Logic Programming
Incorporating Relational Background Knowledge into Reinforcement Learning via Differentiable Inductive Logic Programming
Ali Payani
Faramarz Fekri
21
18
0
23 Mar 2020
A Toolkit for Generating Code Knowledge Graphs
A Toolkit for Generating Code Knowledge Graphs
Ibrahim Abdelaziz
Julian T Dolby
Jamie McCusker
Kavitha Srinivas
21
25
0
21 Feb 2020
Detecting Code Clones with Graph Neural Networkand Flow-Augmented
  Abstract Syntax Tree
Detecting Code Clones with Graph Neural Networkand Flow-Augmented Abstract Syntax Tree
Wenhan Wang
Ge Li
Bo Ma
Xin Xia
Zhi Jin
GNN
18
251
0
20 Feb 2020
Equivalence of Dataflow Graphs via Rewrite Rules Using a
  Graph-to-Sequence Neural Model
Equivalence of Dataflow Graphs via Rewrite Rules Using a Graph-to-Sequence Neural Model
Steve Kommrusch
Théo Barollet
L. Pouchet
30
6
0
17 Feb 2020
Adversarial Robustness for Code
Adversarial Robustness for Code
Pavol Bielik
Martin Vechev
AAML
22
89
0
11 Feb 2020
Learning to Encode and Classify Test Executions
Learning to Encode and Classify Test Executions
Foivos Tsimpourlas
A. Rajan
Miltiadis Allamanis
29
12
0
08 Jan 2020
TreeCaps: Tree-Structured Capsule Networks for Program Source Code
  Processing
TreeCaps: Tree-Structured Capsule Networks for Program Source Code Processing
Vinoj Jayasundara
Nghi D. Q. Bui
Lingxiao Jiang
David Lo
28
16
0
27 Oct 2019
IR2Vec: LLVM IR based Scalable Program Embeddings
IR2Vec: LLVM IR based Scalable Program Embeddings
Venkata Keerthy
Rohit Aggarwal
Shalini Jain
Maunendra Sankar
Ramakrishna Upadrasta
Desarkar
29
10
0
13 Sep 2019
Devign: Effective Vulnerability Identification by Learning Comprehensive
  Program Semantics via Graph Neural Networks
Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks
Yaqin Zhou
Shangqing Liu
J. Siow
Xiaoning Du
Yang Liu
GNN
13
749
0
08 Sep 2019
Neutaint: Efficient Dynamic Taint Analysis with Neural Networks
Neutaint: Efficient Dynamic Taint Analysis with Neural Networks
Dongdong She
Yizheng Chen
Abhishek Shah
Baishakhi Ray
Suman Jana
25
44
0
08 Jul 2019
Learning Blended, Precise Semantic Program Embeddings
Learning Blended, Precise Semantic Program Embeddings
Ke Wang
Z. Su
NAI
30
25
0
03 Jul 2019
GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation
GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation
Marc Brockschmidt
28
134
0
28 Jun 2019
Fast Training of Sparse Graph Neural Networks on Dense Hardware
Fast Training of Sparse Graph Neural Networks on Dense Hardware
Matej Balog
B. V. Merrienboer
Subhodeep Moitra
Yujia Li
Daniel Tarlow
GNN
39
10
0
27 Jun 2019
Learning Execution through Neural Code Fusion
Learning Execution through Neural Code Fusion
Zhan Shi
Kevin Swersky
Daniel Tarlow
Parthasarathy Ranganathan
Milad Hashemi
GNN
21
29
0
17 Jun 2019
Neural Consciousness Flow
Neural Consciousness Flow
Xiaoran Xu
Wei Feng
Zhiqing Sun
Zhihong Deng
GNN
AI4CE
27
2
0
30 May 2019
AgentGraph: Towards Universal Dialogue Management with Structured Deep
  Reinforcement Learning
AgentGraph: Towards Universal Dialogue Management with Structured Deep Reinforcement Learning
Lu Chen
Zhi Chen
Bowen Tan
Sishan Long
Milica Gasic
Kai Yu
19
35
0
27 May 2019
When Deep Learning Met Code Search
When Deep Learning Met Code Search
J. Cambronero
Hongyu Li
Seohyun Kim
Koushik Sen
S. Chandra
CLIP
35
218
0
09 May 2019
A Literature Study of Embeddings on Source Code
A Literature Study of Embeddings on Source Code
Zimin Chen
Monperrus Martin
49
82
0
05 Apr 2019
Program Classification Using Gated Graph Attention Neural Network for
  Online Programming Service
Program Classification Using Gated Graph Attention Neural Network for Online Programming Service
Mingming Lu
Dingwu Tan
N. Xiong
Zailiang Chen
Haifeng Li
15
11
0
09 Mar 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
170
8,393
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Yuchen Zhang
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
43
5,416
0
20 Dec 2018
Deep Learning on Graphs: A Survey
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
59
1,321
0
11 Dec 2018
Structured Neural Summarization
Structured Neural Summarization
Patrick Fernandes
Miltiadis Allamanis
Marc Brockschmidt
GNN
27
212
0
05 Nov 2018
Learning Heuristics for Quantified Boolean Formulas through Deep
  Reinforcement Learning
Learning Heuristics for Quantified Boolean Formulas through Deep Reinforcement Learning
Gil Lederman
M. Rabe
Edward A. Lee
S. Seshia
13
38
0
20 Jul 2018
Neural Code Comprehension: A Learnable Representation of Code Semantics
Neural Code Comprehension: A Learnable Representation of Code Semantics
Tal Ben-Nun
Alice Shoshana Jakobovits
Torsten Hoefler
18
239
0
19 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
121
3,087
0
04 Jun 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
17
450
0
23 May 2018
Generative Code Modeling with Graphs
Generative Code Modeling with Graphs
Marc Brockschmidt
Miltiadis Allamanis
Alexander L. Gaunt
Oleksandr Polozov
40
178
0
22 May 2018
Learning to Optimize Tensor Programs
Learning to Optimize Tensor Programs
Tianqi Chen
Lianmin Zheng
Eddie Q. Yan
Ziheng Jiang
T. Moreau
Luis Ceze
Carlos Guestrin
Arvind Krishnamurthy
39
395
0
21 May 2018
code2vec: Learning Distributed Representations of Code
code2vec: Learning Distributed Representations of Code
Uri Alon
Meital Zilberstein
Omer Levy
Eran Yahav
34
1,157
0
26 Mar 2018
Graph Partition Neural Networks for Semi-Supervised Classification
Graph Partition Neural Networks for Semi-Supervised Classification
Renjie Liao
Marc Brockschmidt
Daniel Tarlow
Alexander L. Gaunt
R. Urtasun
R. Zemel
GNN
22
76
0
16 Mar 2018
Improving Graph Convolutional Networks with Non-Parametric Activation
  Functions
Improving Graph Convolutional Networks with Non-Parametric Activation Functions
Simone Scardapane
S. Van Vaerenbergh
Danilo Comminiello
A. Uncini
GNN
33
7
0
26 Feb 2018
Previous
123