Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00740
Cited By
Learning to Represent Programs with Graphs
1 November 2017
Miltiadis Allamanis
Marc Brockschmidt
Mahmoud Khademi
GNN
NAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Represent Programs with Graphs"
38 / 138 papers shown
Title
Geometric graphs from data to aid classification tasks with graph convolutional networks
Yifan Qian
P. Expert
P. Panzarasa
Mauricio Barahona
GNN
25
9
0
08 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
82
2,663
0
02 May 2020
Typilus: Neural Type Hints
Miltiadis Allamanis
Earl T. Barr
Soline Ducousso
Zheng Gao
35
131
0
06 Apr 2020
OptTyper: Probabilistic Type Inference by Optimising Logical and Natural Constraints
Irene Vlassi Pandi
Earl T. Barr
Andrew D. Gordon
Charles Sutton
22
29
0
01 Apr 2020
Code Prediction by Feeding Trees to Transformers
Seohyun Kim
Jinman Zhao
Yuchi Tian
S. Chandra
52
217
0
30 Mar 2020
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis
Chris Cummins
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Hugh Leather
88
56
0
23 Mar 2020
Incorporating Relational Background Knowledge into Reinforcement Learning via Differentiable Inductive Logic Programming
Ali Payani
Faramarz Fekri
21
18
0
23 Mar 2020
A Toolkit for Generating Code Knowledge Graphs
Ibrahim Abdelaziz
Julian T Dolby
Jamie McCusker
Kavitha Srinivas
21
25
0
21 Feb 2020
Detecting Code Clones with Graph Neural Networkand Flow-Augmented Abstract Syntax Tree
Wenhan Wang
Ge Li
Bo Ma
Xin Xia
Zhi Jin
GNN
18
251
0
20 Feb 2020
Equivalence of Dataflow Graphs via Rewrite Rules Using a Graph-to-Sequence Neural Model
Steve Kommrusch
Théo Barollet
L. Pouchet
30
6
0
17 Feb 2020
Adversarial Robustness for Code
Pavol Bielik
Martin Vechev
AAML
22
89
0
11 Feb 2020
Learning to Encode and Classify Test Executions
Foivos Tsimpourlas
A. Rajan
Miltiadis Allamanis
29
12
0
08 Jan 2020
TreeCaps: Tree-Structured Capsule Networks for Program Source Code Processing
Vinoj Jayasundara
Nghi D. Q. Bui
Lingxiao Jiang
David Lo
28
16
0
27 Oct 2019
IR2Vec: LLVM IR based Scalable Program Embeddings
Venkata Keerthy
Rohit Aggarwal
Shalini Jain
Maunendra Sankar
Ramakrishna Upadrasta
Desarkar
29
10
0
13 Sep 2019
Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks
Yaqin Zhou
Shangqing Liu
J. Siow
Xiaoning Du
Yang Liu
GNN
13
749
0
08 Sep 2019
Neutaint: Efficient Dynamic Taint Analysis with Neural Networks
Dongdong She
Yizheng Chen
Abhishek Shah
Baishakhi Ray
Suman Jana
25
44
0
08 Jul 2019
Learning Blended, Precise Semantic Program Embeddings
Ke Wang
Z. Su
NAI
30
25
0
03 Jul 2019
GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation
Marc Brockschmidt
28
134
0
28 Jun 2019
Fast Training of Sparse Graph Neural Networks on Dense Hardware
Matej Balog
B. V. Merrienboer
Subhodeep Moitra
Yujia Li
Daniel Tarlow
GNN
39
10
0
27 Jun 2019
Learning Execution through Neural Code Fusion
Zhan Shi
Kevin Swersky
Daniel Tarlow
Parthasarathy Ranganathan
Milad Hashemi
GNN
21
29
0
17 Jun 2019
Neural Consciousness Flow
Xiaoran Xu
Wei Feng
Zhiqing Sun
Zhihong Deng
GNN
AI4CE
27
2
0
30 May 2019
AgentGraph: Towards Universal Dialogue Management with Structured Deep Reinforcement Learning
Lu Chen
Zhi Chen
Bowen Tan
Sishan Long
Milica Gasic
Kai Yu
19
35
0
27 May 2019
When Deep Learning Met Code Search
J. Cambronero
Hongyu Li
Seohyun Kim
Koushik Sen
S. Chandra
CLIP
35
218
0
09 May 2019
A Literature Study of Embeddings on Source Code
Zimin Chen
Monperrus Martin
49
82
0
05 Apr 2019
Program Classification Using Gated Graph Attention Neural Network for Online Programming Service
Mingming Lu
Dingwu Tan
N. Xiong
Zailiang Chen
Haifeng Li
15
11
0
09 Mar 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
170
8,393
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Yuchen Zhang
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
43
5,416
0
20 Dec 2018
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
59
1,321
0
11 Dec 2018
Structured Neural Summarization
Patrick Fernandes
Miltiadis Allamanis
Marc Brockschmidt
GNN
27
212
0
05 Nov 2018
Learning Heuristics for Quantified Boolean Formulas through Deep Reinforcement Learning
Gil Lederman
M. Rabe
Edward A. Lee
S. Seshia
13
38
0
20 Jul 2018
Neural Code Comprehension: A Learnable Representation of Code Semantics
Tal Ben-Nun
Alice Shoshana Jakobovits
Torsten Hoefler
18
239
0
19 Jun 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
121
3,087
0
04 Jun 2018
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
17
450
0
23 May 2018
Generative Code Modeling with Graphs
Marc Brockschmidt
Miltiadis Allamanis
Alexander L. Gaunt
Oleksandr Polozov
40
178
0
22 May 2018
Learning to Optimize Tensor Programs
Tianqi Chen
Lianmin Zheng
Eddie Q. Yan
Ziheng Jiang
T. Moreau
Luis Ceze
Carlos Guestrin
Arvind Krishnamurthy
39
395
0
21 May 2018
code2vec: Learning Distributed Representations of Code
Uri Alon
Meital Zilberstein
Omer Levy
Eran Yahav
34
1,157
0
26 Mar 2018
Graph Partition Neural Networks for Semi-Supervised Classification
Renjie Liao
Marc Brockschmidt
Daniel Tarlow
Alexander L. Gaunt
R. Urtasun
R. Zemel
GNN
22
76
0
16 Mar 2018
Improving Graph Convolutional Networks with Non-Parametric Activation Functions
Simone Scardapane
S. Van Vaerenbergh
Danilo Comminiello
A. Uncini
GNN
33
7
0
26 Feb 2018
Previous
1
2
3