ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00215
  4. Cited By
Minimum Energy Quantized Neural Networks

Minimum Energy Quantized Neural Networks

1 November 2017
Bert Moons
Koen Goetschalckx
Nick Van Berckelaer
Marian Verhelst
    MQ
ArXivPDFHTML

Papers citing "Minimum Energy Quantized Neural Networks"

18 / 18 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
53
0
0
04 Apr 2025
Tailor: Altering Skip Connections for Resource-Efficient Inference
Tailor: Altering Skip Connections for Resource-Efficient Inference
Olivia Weng
Gabriel Marcano
Vladimir Loncar
Alireza Khodamoradi
Nojan Sheybani
Andres Meza
F. Koushanfar
K. Denolf
Javier Mauricio Duarte
Ryan Kastner
46
12
0
18 Jan 2023
AskewSGD : An Annealed interval-constrained Optimisation method to train
  Quantized Neural Networks
AskewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks
Louis Leconte
S. Schechtman
Eric Moulines
29
4
0
07 Nov 2022
MotionDeltaCNN: Sparse CNN Inference of Frame Differences in Moving
  Camera Videos
MotionDeltaCNN: Sparse CNN Inference of Frame Differences in Moving Camera Videos
Mathias Parger
Chengcheng Tang
Thomas Neff
Christopher D. Twigg
Cem Keskin
Robert Y. Wang
M. Steinberger
27
6
0
18 Oct 2022
Green, Quantized Federated Learning over Wireless Networks: An
  Energy-Efficient Design
Green, Quantized Federated Learning over Wireless Networks: An Energy-Efficient Design
Minsu Kim
Walid Saad
Mohammad Mozaffari
Merouane Debbah
FedML
MQ
23
27
0
19 Jul 2022
A Learning Framework for Bandwidth-Efficient Distributed Inference in
  Wireless IoT
A Learning Framework for Bandwidth-Efficient Distributed Inference in Wireless IoT
Mostafa Hussien
K. Nguyen
M. Cheriet
21
4
0
17 Mar 2022
On the Tradeoff between Energy, Precision, and Accuracy in Federated
  Quantized Neural Networks
On the Tradeoff between Energy, Precision, and Accuracy in Federated Quantized Neural Networks
Minsu Kim
Walid Saad
Mohammad Mozaffari
Merouane Debbah
FedML
MQ
19
23
0
15 Nov 2021
Accelerating Recurrent Neural Networks for Gravitational Wave
  Experiments
Accelerating Recurrent Neural Networks for Gravitational Wave Experiments
Zhiqiang Que
Erwei Wang
Umar Marikar
Eric A. Moreno
J. Ngadiuba
...
Vladimir Loncar
S. Summers
M. Pierini
P. Cheung
Wayne Luk
11
25
0
26 Jun 2021
Charged particle tracking via edge-classifying interaction networks
Charged particle tracking via edge-classifying interaction networks
G. Dezoort
S. Thais
Javier Mauricio Duarte
Vesal Razavimaleki
M. Atkinson
I. Ojalvo
Mark S. Neubauer
P. Elmer
25
46
0
30 Mar 2021
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power
  Machine Learning Devices
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
F. Fahim
B. Hawks
C. Herwig
J. Hirschauer
S. Jindariani
...
J. Ngadiuba
Miaoyuan Liu
Duc Hoang
E. Kreinar
Zhenbin Wu
30
129
0
09 Mar 2021
VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision
  Neural Network Inference
VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision Neural Network Inference
Steve Dai
Rangharajan Venkatesan
Haoxing Ren
B. Zimmer
W. Dally
Brucek Khailany
MQ
30
67
0
08 Feb 2021
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle
  Reconstruction in High Energy Physics
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
Y. Iiyama
G. Cerminara
Abhijay Gupta
J. Kieseler
Vladimir Loncar
...
Miaoyuan Liu
K. Pedro
N. Tran
E. Kreinar
Zhenbin Wu
11
66
0
08 Aug 2020
Automatic heterogeneous quantization of deep neural networks for
  low-latency inference on the edge for particle detectors
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
C. Coelho
Aki Kuusela
Shane Li
Zhuang Hao
T. Aarrestad
Vladimir Loncar
J. Ngadiuba
M. Pierini
Adrian Alan Pol
S. Summers
MQ
32
175
0
15 Jun 2020
A Survey of Methods for Low-Power Deep Learning and Computer Vision
A Survey of Methods for Low-Power Deep Learning and Computer Vision
Abhinav Goel
Caleb Tung
Yung-Hsiang Lu
George K. Thiruvathukal
VLM
15
92
0
24 Mar 2020
Layerwise Noise Maximisation to Train Low-Energy Deep Neural Networks
Layerwise Noise Maximisation to Train Low-Energy Deep Neural Networks
Sébastien Henwood
François Leduc-Primeau
Yvon Savaria
28
10
0
23 Dec 2019
MorphIC: A 65-nm 738k-Synapse/mm$^2$ Quad-Core Binary-Weight Digital
  Neuromorphic Processor with Stochastic Spike-Driven Online Learning
MorphIC: A 65-nm 738k-Synapse/mm2^22 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning
Charlotte Frenkel
J. Legat
D. Bol
33
113
0
17 Apr 2019
A Survey on Methods and Theories of Quantized Neural Networks
A Survey on Methods and Theories of Quantized Neural Networks
Yunhui Guo
MQ
29
231
0
13 Aug 2018
XNOR Neural Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary
  Neural Network Inference
XNOR Neural Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary Neural Network Inference
Francesco Conti
Pasquale Davide Schiavone
Luca Benini
32
108
0
09 Jul 2018
1