ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.11239
  4. Cited By
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics

Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics

30 October 2017
C. Wehmeyer
Frank Noé
    AI4CE
    BDL
ArXivPDFHTML

Papers citing "Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics"

11 / 11 papers shown
Title
Al-Khwarizmi: Discovering Physical Laws with Foundation Models
Al-Khwarizmi: Discovering Physical Laws with Foundation Models
Christopher E. Mower
Haitham Bou-Ammar
AI4CE
101
2
0
03 Feb 2025
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
120
49
0
27 Feb 2020
VAMPnets: Deep learning of molecular kinetics
VAMPnets: Deep learning of molecular kinetics
Andreas Mardt
Luca Pasquali
Hao Wu
Frank Noé
47
542
0
16 Oct 2017
Variational approach for learning Markov processes from time series data
Variational approach for learning Markov processes from time series data
Hao Wu
Frank Noé
BDL
AI4TS
12
261
0
14 Jul 2017
Deep Learning for Computational Chemistry
Deep Learning for Computational Chemistry
Garrett B. Goh
Nathan Oken Hodas
Abhinav Vishnu
AI4CE
32
674
0
17 Jan 2017
Variational Koopman models: slow collective variables and molecular
  kinetics from short off-equilibrium simulations
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
122
127
0
20 Oct 2016
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
103
2,911
0
07 Oct 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
229
149,474
0
22 Dec 2014
Variational cross-validation of slow dynamical modes in molecular
  kinetics
Variational cross-validation of slow dynamical modes in molecular kinetics
R. McGibbon
Vijay S. Pande
43
174
0
30 Jul 2014
A variational approach to modeling slow processes in stochastic
  dynamical systems
A variational approach to modeling slow processes in stochastic dynamical systems
Frank Noé
Feliks Nuske
42
292
0
29 Nov 2012
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
57
1,581
0
12 Sep 2011
1