Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.11214
Cited By
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
30 October 2017
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility"
33 / 33 papers shown
Title
User and Recommender Behavior Over Time: Contextualizing Activity, Effectiveness, Diversity, and Fairness in Book Recommendation
Samira Vaez Barenji
Sushobhan Parajuli
Michael D. Ekstrand
MLAU
47
0
0
07 May 2025
User Feedback Alignment for LLM-powered Exploration in Large-scale Recommendation Systems
Jianling Wang
Yifan Liu
Yinghao Sun
Xuejian Ma
Yueqi Wang
...
Onkar Dalal
Ed Chi
Lichan Hong
Ningren Han
Haokai Lu
24
0
0
07 Apr 2025
AdaF^2M^2: Comprehensive Learning and Responsive Leveraging Features in Recommendation System
Yongchun Zhu
Jingwu Chen
Ling Chen
Y. Li
Feng Zhang
Xiao Yang
Zuotao Liu
44
0
0
28 Jan 2025
Designing Long-term Group Fair Policies in Dynamical Systems
Miriam Rateike
Isabel Valera
Patrick Forré
28
4
0
21 Nov 2023
Decongestion by Representation: Learning to Improve Economic Welfare in Marketplaces
Omer Nahum
Gali Noti
David C. Parkes
Nir Rosenfeld
16
2
0
18 Jun 2023
Simulating News Recommendation Ecosystem for Fun and Profit
Guangping Zhang
Dongsheng Li
Hansu Gu
T. Lu
Li Shang
Ning Gu
16
0
0
23 May 2023
A Classification of Feedback Loops and Their Relation to Biases in Automated Decision-Making Systems
Nicolò Pagan
Joachim Baumann
Ezzat Elokda
Giulia De Pasquale
S. Bolognani
Anikó Hannák
27
23
0
10 May 2023
Runtime Monitoring of Dynamic Fairness Properties
T. Henzinger
Mahyar Karimi
Konstantin Kueffner
Kaushik Mallik
27
14
0
08 May 2023
Causal Inference out of Control: Estimating the Steerability of Consumption
Gary Cheng
Moritz Hardt
Celestine Mendler-Dünner
CML
29
1
0
10 Feb 2023
Recommender Systems: A Primer
P. Castells
Dietmar Jannach
OffRL
24
5
0
06 Feb 2023
Individual Fairness for Social Media Influencers
Ş. Ionescu
Nicolò Pagan
Anikó Hannák
FaML
19
2
0
19 Jan 2023
Understanding or Manipulation: Rethinking Online Performance Gains of Modern Recommender Systems
Zhengbang Zhu
Rongjun Qin
Junjie Huang
Xinyi Dai
Yang Yu
Yong Yu
Weinan Zhang
26
2
0
11 Oct 2022
iFlipper: Label Flipping for Individual Fairness
Hantian Zhang
Ki Hyun Tae
Jaeyoung Park
Xu Chu
Steven Euijong Whang
25
6
0
15 Sep 2022
Hidden Author Bias in Book Recommendation
Savvina Daniil
Mirjam Cuper
Cynthia C. S. Liem
Jacco van Ossenbruggen
L. Hollink
26
3
0
01 Sep 2022
Performative Reinforcement Learning
Debmalya Mandal
Stelios Triantafyllou
Goran Radanović
25
17
0
30 Jun 2022
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
67
34
0
25 May 2022
Towards Intersectionality in Machine Learning: Including More Identities, Handling Underrepresentation, and Performing Evaluation
Angelina Wang
V. V. Ramaswamy
Olga Russakovsky
FaML
21
92
0
10 May 2022
Evaluating Deep Vs. Wide & Deep Learners As Contextual Bandits For Personalized Email Promo Recommendations
A. A. Kocherzhenko
Nirmal Sobha Kartha
Tengfei Li
Hsin-Yi Shih
Shih
Marco Mandic
Mike Fuller
Arshak Navruzyan
20
0
0
31 Jan 2022
Revisiting Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
Nicola Neophytou
Bhaskar Mitra
Catherine Stinson
CML
15
24
0
15 Oct 2021
Multiversal Simulacra: Understanding Hypotheticals and Possible Worlds Through Simulation
Michael D. Ekstrand
16
2
0
02 Oct 2021
Understanding Longitudinal Dynamics of Recommender Systems with Agent-Based Modeling and Simulation
G. Adomavicius
Dietmar Jannach
Stephan Leitner
Jingjing Zhang
13
8
0
25 Aug 2021
T-RECS: A Simulation Tool to Study the Societal Impact of Recommender Systems
Eli Lucherini
Matthew Sun
Amy A. Winecoff
Arvind Narayanan
29
23
0
19 Jul 2021
A Graph-based Approach for Mitigating Multi-sided Exposure Bias in Recommender Systems
M. Mansoury
Himan Abdollahpouri
Mykola Pechenizkiy
B. Mobasher
Robin Burke
FaML
13
44
0
07 Jul 2021
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
47
94
0
01 Jul 2021
Correcting Exposure Bias for Link Recommendation
Shantanu Gupta
Hao Wang
Zachary Chase Lipton
Bernie Wang
CML
17
34
0
13 Jun 2021
Addressing the Long-term Impact of ML Decisions via Policy Regret
David Lindner
Hoda Heidari
Andreas Krause
OffRL
18
7
0
02 Jun 2021
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
17
18
0
25 Nov 2020
Theoretical Modeling of the Iterative Properties of User Discovery in a Collaborative Filtering Recommender System
Sami Khenissi
M. Boujelbene
O. Nasraoui
12
23
0
21 Aug 2020
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Dalin Guo
S. Ktena
Ferenc Huszár
Pranay K. Myana
Wenzhe Shi
Alykhan Tejani
OffRL
17
39
0
03 Aug 2020
Quantifying the Effects of Recommendation Systems
Sunshine Chong
A. Abeliuk
CML
6
5
0
04 Feb 2020
Fairness in Learning-Based Sequential Decision Algorithms: A Survey
Xueru Zhang
M. Liu
FaML
35
51
0
14 Jan 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
299
4,203
0
23 Aug 2019
Fighting Fire with Fire: Using Antidote Data to Improve Polarization and Fairness of Recommender Systems
Bashir Rastegarpanah
Krishna P. Gummadi
M. Crovella
8
119
0
02 Dec 2018
1