ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10898
  4. Cited By
Learning to solve inverse problems using Wasserstein loss

Learning to solve inverse problems using Wasserstein loss

30 October 2017
J. Adler
Axel Ringh
Ozan Oktem
Johan Karlsson
ArXivPDFHTML

Papers citing "Learning to solve inverse problems using Wasserstein loss"

7 / 7 papers shown
Title
Efficient Prior Calibration From Indirect Data
Efficient Prior Calibration From Indirect Data
O. Deniz Akyildiz
Mark Girolami
Andrew M. Stuart
Arnaud Vadeboncoeur
47
1
0
28 May 2024
Learning Variational Models with Unrolling and Bilevel Optimization
Learning Variational Models with Unrolling and Bilevel Optimization
Christoph Brauer
Niklas Breustedt
T. Wolff
D. Lorenz
SSL
36
3
0
26 Sep 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
78
43
0
01 Feb 2022
Learning the geometry of wave-based imaging
Learning the geometry of wave-based imaging
K. Kothari
Maarten V. de Hoop
Ivan Dokmanić
AI4CE
34
8
0
10 Jun 2020
Learning step sizes for unfolded sparse coding
Learning step sizes for unfolded sparse coding
Pierre Ablin
Thomas Moreau
Mathurin Massias
Alexandre Gramfort
MQ
30
51
0
27 May 2019
Empirical Regularized Optimal Transport: Statistical Theory and
  Applications
Empirical Regularized Optimal Transport: Statistical Theory and Applications
M. Klatt
Carla Tameling
Axel Munk
OT
44
59
0
23 Oct 2018
Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass
  Transport
Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass Transport
Filip Elvander
A. Jakobsson
Johan Karlsson
24
22
0
10 Nov 2017
1