Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.10571
Cited By
Certifying Some Distributional Robustness with Principled Adversarial Training
29 October 2017
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Certifying Some Distributional Robustness with Principled Adversarial Training"
40 / 240 papers shown
Title
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
L. V. D. van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
33
62
0
05 Mar 2019
A Fundamental Performance Limitation for Adversarial Classification
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
AAML
33
8
0
04 Mar 2019
Enhancing the Robustness of Deep Neural Networks by Boundary Conditional GAN
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
19
20
0
28 Feb 2019
Robust Decision Trees Against Adversarial Examples
Hongge Chen
Huan Zhang
Duane S. Boning
Cho-Jui Hsieh
AAML
22
116
0
27 Feb 2019
On the Sensitivity of Adversarial Robustness to Input Data Distributions
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
26
59
0
22 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
36
210
0
21 Feb 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
39
449
0
27 Jan 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
22
144
0
15 Jan 2019
Preventing Failures Due to Dataset Shift: Learning Predictive Models That Transport
Adarsh Subbaswamy
Peter F. Schulam
Suchi Saria
OOD
11
20
0
11 Dec 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
15
68
0
13 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
Mohsen Guizani
AAML
21
23
0
06 Nov 2018
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Pang Wei Koh
Jacob Steinhardt
Percy Liang
6
240
0
02 Nov 2018
Learning Models with Uniform Performance via Distributionally Robust Optimization
John C. Duchi
Hongseok Namkoong
OOD
19
402
0
20 Oct 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
13
15
0
30 Sep 2018
Wasserstein Distributionally Robust Kalman Filtering
Soroosh Shafieezadeh-Abadeh
Viet Anh Nguyen
Daniel Kuhn
Peyman Mohajerin Esfahani
14
99
0
24 Sep 2018
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
28
341
0
10 Sep 2018
Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao
Vincent Tjeng
Nur Muhammad (Mahi) Shafiullah
A. Madry
AAML
OOD
12
199
0
09 Sep 2018
Structured Adversarial Attack: Towards General Implementation and Better Interpretability
Kaidi Xu
Sijia Liu
Pu Zhao
Pin-Yu Chen
Huan Zhang
Quanfu Fan
Deniz Erdogmus
Yanzhi Wang
X. Lin
AAML
21
160
0
05 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Monge blunts Bayes: Hardness Results for Adversarial Training
Zac Cranko
A. Menon
Richard Nock
Cheng Soon Ong
Zhan Shi
Christian J. Walder
AAML
28
16
0
08 Jun 2018
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi
Hongseok Namkoong
Ozan Sener
John C. Duchi
Vittorio Murino
Silvio Savarese
OOD
41
768
0
30 May 2018
Local Saddle Point Optimization: A Curvature Exploitation Approach
Leonard Adolphs
Hadi Daneshmand
Aurelien Lucchi
Thomas Hofmann
37
107
0
15 May 2018
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
21
41
0
14 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
25
785
0
30 Apr 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
38
686
0
25 Apr 2018
Semantic Adversarial Deep Learning
S. Seshia
S. Jha
T. Dreossi
AAML
SILM
27
90
0
19 Apr 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
26
32
0
21 Mar 2018
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
36
625
0
16 Mar 2018
Robust GANs against Dishonest Adversaries
Zhi Xu
Chengtao Li
Stefanie Jegelka
AAML
34
3
0
27 Feb 2018
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
33
248
0
23 Feb 2018
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
31
174
0
26 Dec 2017
Theoretical limitations of Encoder-Decoder GAN architectures
Sanjeev Arora
Andrej Risteski
Yi Zhang
GAN
AI4CE
14
15
0
07 Nov 2017
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Yizhen Wang
S. Jha
Kamalika Chaudhuri
AAML
13
154
0
13 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
65
2,699
0
19 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,113
0
04 Nov 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach
John C. Duchi
Peter Glynn
Hongseok Namkoong
4
318
0
11 Oct 2016
Sample Out-Of-Sample Inference Based on Wasserstein Distance
Jose H. Blanchet
Yang Kang
34
35
0
04 May 2016
Previous
1
2
3
4
5