ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10225
  4. Cited By
Adversarial Detection of Flash Malware: Limitations and Open Issues
v1v2 (latest)

Adversarial Detection of Flash Malware: Limitations and Open Issues

27 October 2017
Davide Maiorca
Ambra Demontis
Battista Biggio
Maria Elena Chiappe
Giorgio Giacinto
    AAML
ArXiv (abs)PDFHTML

Papers citing "Adversarial Detection of Flash Malware: Limitations and Open Issues"

7 / 7 papers shown
Title
EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
  Android Malware Detection
EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box Android Malware Detection
Hamid Bostani
Veelasha Moonsamy
AAML
93
60
0
07 Oct 2021
Why Adversarial Reprogramming Works, When It Fails, and How to Tell the
  Difference
Why Adversarial Reprogramming Works, When It Fails, and How to Tell the Difference
Yang Zheng
Xiaoyi Feng
Zhaoqiang Xia
Xiaoyue Jiang
Ambra Demontis
Maura Pintor
Battista Biggio
Fabio Roli
AAML
85
22
0
26 Aug 2021
The Threat of Offensive AI to Organizations
The Threat of Offensive AI to Organizations
Yisroel Mirsky
Ambra Demontis
J. Kotak
Ram Shankar
Deng Gelei
Liu Yang
Xinming Zhang
Wenke Lee
Yuval Elovici
Battista Biggio
99
85
0
30 Jun 2021
Arms Race in Adversarial Malware Detection: A Survey
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
103
52
0
24 May 2020
MAB-Malware: A Reinforcement Learning Framework for Attacking Static
  Malware Classifiers
MAB-Malware: A Reinforcement Learning Framework for Attacking Static Malware Classifiers
Wei Song
Xuezixiang Li
Sadia Afroz
D. Garg
Dmitry Kuznetsov
Heng Yin
AAML
117
27
0
06 Mar 2020
Adversarial Malware Binaries: Evading Deep Learning for Malware
  Detection in Executables
Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables
Bojan Kolosnjaji
Ambra Demontis
Battista Biggio
Davide Maiorca
Giorgio Giacinto
Claudia Eckert
Fabio Roli
AAML
70
318
0
12 Mar 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
175
1,411
0
08 Dec 2017
1