ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.09207
  4. Cited By
Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural
  Networks

Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks

25 October 2017
Tolga Ergen
Ali Hassan Mirza
Suleyman Serdar Kozat
    AI4TS
ArXivPDFHTML

Papers citing "Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks"

18 / 18 papers shown
Title
GAL-MAD: Towards Explainable Anomaly Detection in Microservice Applications Using Graph Attention Networks
GAL-MAD: Towards Explainable Anomaly Detection in Microservice Applications Using Graph Attention Networks
Lahiru Akmeemana
Chamodya Attanayake
Husni Faiz
Sandareka Wickramanayake
MLAU
AI4TS
69
0
0
31 Mar 2025
Learning Algorithms Made Simple
Learning Algorithms Made Simple
Noorbakhsh Amiri Golilarz
Elias Hossain
Abdoljalil Addeh
Keyan Alexander Rahimi
AAML
52
0
0
11 Oct 2024
NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly
  Generation
NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly Generation
Hao Dong
Gaëtan Frusque
Yue Zhao
Eleni Chatzi
Olga Fink
AAML
39
5
0
20 Nov 2023
Reconstruction-based LSTM-Autoencoder for Anomaly-based DDoS Attack
  Detection over Multivariate Time-Series Data
Reconstruction-based LSTM-Autoencoder for Anomaly-based DDoS Attack Detection over Multivariate Time-Series Data
Yuanyuan Wei
Ju-Seong Jang
Fariza Sabrina
Wen Xu
S. Çamtepe
Aeryn Dunmore
16
4
0
21 Apr 2023
Interactive System-wise Anomaly Detection
Interactive System-wise Anomaly Detection
Guanchu Wang
Ninghao Liu
Daochen Zha
Xia Hu
AAML
22
1
0
21 Apr 2023
A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
  a Wind Power Dataset
A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of a Wind Power Dataset
Ahmed Shoyeb Raihan
I. Imtiaz Ahmed
AI4TS
14
8
0
17 Mar 2023
Navigating the Metric Maze: A Taxonomy of Evaluation Metrics for Anomaly
  Detection in Time Series
Navigating the Metric Maze: A Taxonomy of Evaluation Metrics for Anomaly Detection in Time Series
Sondre Sørbø
M. Ruocco
AI4TS
34
19
0
02 Mar 2023
DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate
  Time Series Data
DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data
Ling Yu
AI4TS
28
27
0
17 Feb 2023
Training OOD Detectors in their Natural Habitats
Training OOD Detectors in their Natural Habitats
Julian Katz-Samuels
Julia B. Nakhleh
Robert D. Nowak
Yixuan Li
OODD
24
90
0
07 Feb 2022
Applications of Recurrent Neural Network for Biometric Authentication &
  Anomaly Detection
Applications of Recurrent Neural Network for Biometric Authentication & Anomaly Detection
Joseph M. Ackerson
Rushit Dave
Naeem Seliya
44
58
0
13 Sep 2021
Anomaly Detection: How to Artificially Increase your F1-Score with a
  Biased Evaluation Protocol
Anomaly Detection: How to Artificially Increase your F1-Score with a Biased Evaluation Protocol
Damien Fourure
Muhammad Usama Javaid
N. Posocco
Simon Tihon
28
37
0
30 Jun 2021
Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
  Detection
Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection
Yingjie Zhou
Xuchen Song
Yanru Zhang
Fanxing Liu
Ce Zhu
Lingqiao Liu
UQCV
31
102
0
22 May 2021
Extending Isolation Forest for Anomaly Detection in Big Data via K-Means
Extending Isolation Forest for Anomaly Detection in Big Data via K-Means
Md Tahmid Rahman Laskar
J. Huang
Vladan Smetana
Chris Stewart
Kees Pouw
Aijun An
Steve Chan
Lei Liu
41
42
0
27 Apr 2021
Anomaly Detection in Beehives using Deep Recurrent Autoencoders
Anomaly Detection in Beehives using Deep Recurrent Autoencoders
Padraig Davidson
M. Steininger
Florian Lautenschlager
Konstantin Kobs
Anna Krause
Andreas Hotho
23
21
0
10 Mar 2020
Unsupervised Anomaly Detection in Stream Data with Online Evolving
  Spiking Neural Networks
Unsupervised Anomaly Detection in Stream Data with Online Evolving Spiking Neural Networks
P. Maciag
Marzena Kryszkiewicz
R. Bembenik
J. Lobo
Javier Del Ser
AI4TS
29
55
0
18 Dec 2019
A Framework for End-to-End Deep Learning-Based Anomaly Detection in
  Transportation Networks
A Framework for End-to-End Deep Learning-Based Anomaly Detection in Transportation Networks
Neema Davis
G. Raina
Krishna Jagannathan
AI4TS
18
26
0
20 Nov 2019
A Combination of Temporal Sequence Learning and Data Description for
  Anomaly-based NIDS
A Combination of Temporal Sequence Learning and Data Description for Anomaly-based NIDS
Nguyen Thanh Van
T. N. Thinh
Le Thanh Sach
AI4TS
11
4
0
07 Jun 2019
Deep Learning for Anomaly Detection: A Survey
Deep Learning for Anomaly Detection: A Survey
Raghavendra Chalapathy
Sanjay Chawla
AI4TS
41
1,479
0
10 Jan 2019
1