ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.09196
  4. Cited By
Inversion using a new low-dimensional representation of complex binary
  geological media based on a deep neural network

Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

25 October 2017
E. Laloy
Romain Hérault
J. Lee
D. Jacques
N. Linde
ArXivPDFHTML

Papers citing "Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network"

10 / 10 papers shown
Title
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
58
0
0
10 Sep 2024
VI-DGP: A variational inference method with deep generative prior for
  solving high-dimensional inverse problems
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
19
2
0
22 Feb 2023
Bathymetry Inversion using a Deep-Learning-Based Surrogate for Shallow
  Water Equations Solvers
Bathymetry Inversion using a Deep-Learning-Based Surrogate for Shallow Water Equations Solvers
Xiaofeng Liu
Yalan Song
Chaopeng Shen
AI4CE
15
9
0
05 Mar 2022
Deep Learning for Simultaneous Inference of Hydraulic and Transport
  Properties
Deep Learning for Simultaneous Inference of Hydraulic and Transport Properties
Zitong Zhou
N. Zabaras
D. Tartakovsky
21
16
0
24 Oct 2021
3D CNN-PCA: A Deep-Learning-Based Parameterization for Complex Geomodels
3D CNN-PCA: A Deep-Learning-Based Parameterization for Complex Geomodels
Yimin Liu
L. Durlofsky
AI4CE
11
60
0
16 Jul 2020
Objective-Sensitive Principal Component Analysis for High-Dimensional
  Inverse Problems
Objective-Sensitive Principal Component Analysis for High-Dimensional Inverse Problems
M. Elizarev
A. Mukhin
A. Khlyupin
11
3
0
02 Jun 2020
Data-Space Inversion Using a Recurrent Autoencoder for Time-Series
  Parameterization
Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization
Su Jiang
L. Durlofsky
14
18
0
30 Apr 2020
Towards a Robust Parameterization for Conditioning Facies Models Using
  Deep Variational Autoencoders and Ensemble Smoother
Towards a Robust Parameterization for Conditioning Facies Models Using Deep Variational Autoencoders and Ensemble Smoother
S. A. Canchumuni
A. Emerick
M. Pacheco
OOD
AI4CE
14
109
0
17 Dec 2018
Deep convolutional encoder-decoder networks for uncertainty
  quantification of dynamic multiphase flow in heterogeneous media
Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
S. Mo
Yinhao Zhu
N. Zabaras
Xiaoqing Shi
Jichun Wu
AI4CE
14
271
0
02 Jul 2018
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
182
3,262
0
09 Jun 2012
1