Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.07406
Cited By
First-order Methods Almost Always Avoid Saddle Points
20 October 2017
J. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"First-order Methods Almost Always Avoid Saddle Points"
11 / 11 papers shown
Title
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
40
0
0
08 Feb 2024
Stochastic noise can be helpful for variational quantum algorithms
Junyu Liu
Frederik Wilde
A. A. Mele
Liang Jiang
Jens Eisert
Jens Eisert
16
34
0
13 Oct 2022
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
37
69
0
14 Jun 2022
Training Generative Adversarial Networks with Adaptive Composite Gradient
Huiqing Qi
Fang Li
Shengli Tan
Xiangyun Zhang
GAN
21
3
0
10 Nov 2021
Safe Reinforcement Learning Using Advantage-Based Intervention
Nolan Wagener
Byron Boots
Ching-An Cheng
27
52
0
16 Jun 2021
On the Impossibility of Global Convergence in Multi-Loss Optimization
Alistair Letcher
13
32
0
26 May 2020
Differentiable Game Mechanics
Alistair Letcher
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
29
79
0
13 May 2019
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
K. Ramchandran
Peter L. Bartlett
FedML
24
97
0
14 Jun 2018
The Global Optimization Geometry of Shallow Linear Neural Networks
Zhihui Zhu
Daniel Soudry
Yonina C. Eldar
M. Wakin
ODL
16
36
0
13 May 2018
The Mechanics of n-Player Differentiable Games
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
MLT
16
273
0
15 Feb 2018
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
1