Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.07324
Cited By
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
19 October 2017
Pavel Izmailov
Alexander Novikov
D. Kropotov
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition"
8 / 8 papers shown
Title
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
41
1
0
12 Jul 2023
Kernel Interpolation with Sparse Grids
Mohit Yadav
Daniel Sheldon
Cameron Musco
23
5
0
23 May 2023
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
68
75
0
28 May 2022
Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on Riemannian Gradient Descent With Illustrations of Speech Processing
Jun Qi
Chao-Han Huck Yang
Pin-Yu Chen
Javier Tejedor
25
16
0
11 Mar 2022
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
27
8
0
28 Feb 2021
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
24
113
0
18 Jun 2020
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
10
225
0
19 Mar 2019
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
1