Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.06169
Cited By
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
17 October 2017
S. Tan
R. Caruana
Giles Hooker
Yin Lou
MLAU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation"
31 / 31 papers shown
Title
Explaining Probabilistic Models with Distributional Values
Luca Franceschi
Michele Donini
Cédric Archambeau
Matthias Seeger
FAtt
39
2
0
15 Feb 2024
Active Globally Explainable Learning for Medical Images via Class Association Embedding and Cyclic Adversarial Generation
Ruitao Xie
Jingbang Chen
Limai Jiang
Ru Xiao
Yi-Lun Pan
Yunpeng Cai
GAN
MedIm
27
0
0
12 Jun 2023
Interpretable Differencing of Machine Learning Models
Swagatam Haldar
Diptikalyan Saha
Dennis L. Wei
Rahul Nair
Elizabeth M. Daly
16
1
0
10 Jun 2023
Explaining black box text modules in natural language with language models
Chandan Singh
Aliyah R. Hsu
Richard Antonello
Shailee Jain
Alexander G. Huth
Bin-Xia Yu
Jianfeng Gao
MILM
36
47
0
17 May 2023
How to address monotonicity for model risk management?
Dangxing Chen
Weicheng Ye
21
5
0
28 Apr 2023
Denoising diffusion algorithm for inverse design of microstructures with fine-tuned nonlinear material properties
Nikolaos N. Vlassis
WaiChing Sun
AI4CE
DiffM
22
46
0
24 Feb 2023
Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance
Dangxing Chen
Luyao Zhang
SyDa
35
6
0
17 Jan 2023
Testing the effectiveness of saliency-based explainability in NLP using randomized survey-based experiments
Adel Rahimi
Shaurya Jain
FAtt
18
0
0
25 Nov 2022
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
21
36
0
08 Jun 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
43
78
0
06 May 2022
Towards Explainable Evaluation Metrics for Natural Language Generation
Christoph Leiter
Piyawat Lertvittayakumjorn
M. Fomicheva
Wei Zhao
Yang Gao
Steffen Eger
AAML
ELM
30
20
0
21 Mar 2022
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
Upol Ehsan
Samir Passi
Q. V. Liao
Larry Chan
I-Hsiang Lee
Michael J. Muller
Mark O. Riedl
32
86
0
28 Jul 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
28
71
0
04 Jul 2021
False perfection in machine prediction: Detecting and assessing circularity problems in machine learning
Michael Hagmann
Stefan Riezler
18
1
0
23 Jun 2021
Bias, Fairness, and Accountability with AI and ML Algorithms
Neng-Zhi Zhou
Zach Zhang
V. Nair
Harsh Singhal
Jie Chen
Agus Sudjianto
FaML
21
9
0
13 May 2021
From Human Explanation to Model Interpretability: A Framework Based on Weight of Evidence
David Alvarez-Melis
Harmanpreet Kaur
Hal Daumé
Hanna M. Wallach
Jennifer Wortman Vaughan
FAtt
53
28
0
27 Apr 2021
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
136
119
0
21 Jan 2021
Reflective-Net: Learning from Explanations
Johannes Schneider
Michalis Vlachos
FAtt
OffRL
LRM
57
18
0
27 Nov 2020
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
27
100
0
10 Nov 2020
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
164
0
20 Oct 2020
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
22
77
0
11 Jun 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
46
406
0
29 Apr 2020
An Extension of LIME with Improvement of Interpretability and Fidelity
Sheng Shi
Yangzhou Du
Wei Fan
FAtt
11
8
0
26 Apr 2020
Revealing Neural Network Bias to Non-Experts Through Interactive Counterfactual Examples
Chelsea M. Myers
Evan Freed
Luis Fernando Laris Pardo
Anushay Furqan
S. Risi
Jichen Zhu
CML
18
12
0
07 Jan 2020
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
35
805
0
06 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
41
6,125
0
22 Oct 2019
Measuring Unfairness through Game-Theoretic Interpretability
Juliana Cesaro
Fabio Gagliardi Cozman
FAtt
16
13
0
12 Oct 2019
Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance
Giles Hooker
L. Mentch
Siyu Zhou
37
154
0
01 May 2019
Copying Machine Learning Classifiers
Irene Unceta
Jordi Nin
O. Pujol
14
18
0
05 Mar 2019
Optimal Piecewise Local-Linear Approximations
Kartik Ahuja
W. Zame
M. Schaar
FAtt
27
1
0
27 Jun 2018
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1