Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.05092
Cited By
Dropout as a Low-Rank Regularizer for Matrix Factorization
13 October 2017
Jacopo Cavazza
Pietro Morerio
B. Haeffele
Connor Lane
Vittorio Murino
René Vidal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dropout as a Low-Rank Regularizer for Matrix Factorization"
12 / 12 papers shown
Title
Reasoning Bias of Next Token Prediction Training
Pengxiao Lin
Zhongwang Zhang
Zhi-Qin John Xu
LRM
94
2
0
21 Feb 2025
Exact Solutions of a Deep Linear Network
Liu Ziyin
Botao Li
Xiangmin Meng
ODL
19
21
0
10 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
26
3
0
30 Jan 2022
Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks
C. F. G. Santos
João Paulo Papa
24
211
0
10 Jan 2022
Architectural Adversarial Robustness: The Case for Deep Pursuit
George Cazenavette
Calvin Murdock
Simon Lucey
AAML
34
23
0
29 Nov 2020
Deep matrix factorizations
Pierre De Handschutter
Nicolas Gillis
Xavier Siebert
BDL
28
40
0
01 Oct 2020
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
64
37
0
06 Mar 2020
An ETF view of Dropout regularization
Dor Bank
Raja Giryes
8
4
0
14 Oct 2018
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
24
66
0
26 Jun 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,636
0
03 Jul 2012
Convex Sparse Matrix Factorizations
Francis R. Bach
Julien Mairal
Jean Ponce
137
143
0
10 Dec 2008
1