Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.03337
Cited By
Standard detectors aren't (currently) fooled by physical adversarial stop signs
9 October 2017
Jiajun Lu
Hussein Sibai
Evan Fabry
David A. Forsyth
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Standard detectors aren't (currently) fooled by physical adversarial stop signs"
10 / 10 papers shown
Title
Fall Leaf Adversarial Attack on Traffic Sign Classification
Anthony Etim
Jakub Szefer
AAML
122
3
0
27 Nov 2024
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
87
73
0
07 Aug 2020
Robust Physical-World Attacks on Deep Learning Models
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
Amir Rahmati
Chaowei Xiao
Atul Prakash
Tadayoshi Kohno
D. Song
AAML
54
595
0
27 Jul 2017
NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles
Jiajun Lu
Hussein Sibai
Evan Fabry
David A. Forsyth
AAML
81
281
0
12 Jul 2017
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly
Jiajun Lu
Theerasit Issaranon
David A. Forsyth
GAN
90
381
0
01 Apr 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
136
2,528
0
26 Oct 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,895
0
14 Nov 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
161
3,271
0
05 Dec 2014
1