Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.03206
Cited By
Replication or exploration? Sequential design for stochastic simulation experiments
9 October 2017
M. Binois
Jiangeng Huang
R. Gramacy
M. Ludkovski
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Replication or exploration? Sequential design for stochastic simulation experiments"
12 / 12 papers shown
Title
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
74
0
0
29 Apr 2025
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
47
0
0
17 May 2024
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
19
1
0
20 Jan 2023
Multi-objective hyperparameter optimization with performance uncertainty
A. Hernández
I. Nieuwenhuyse
Gonzalo Nápoles
14
2
0
09 Sep 2022
Bayesian multi-objective optimization for stochastic simulators: an extension of the Pareto Active Learning method
Bruno Barracosa
Julien Bect
H. Baraffe
J. Morin
Josselin Fournel
E. Vázquez
27
2
0
08 Jul 2022
A survey on multi-objective hyperparameter optimization algorithms for Machine Learning
A. Hernández
I. Nieuwenhuyse
Sebastian Rojas Gonzalez
21
95
0
23 Nov 2021
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
8
34
0
09 Jun 2020
Adaptive Batching for Gaussian Process Surrogates with Application in Noisy Level Set Estimation
Xiong Lyu
M. Ludkovski
17
4
0
19 Mar 2020
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
31
35
0
17 Oct 2019
Kernels over Sets of Finite Sets using RKHS Embeddings, with Application to Bayesian (Combinatorial) Optimization
Poompol Buathong
D. Ginsbourger
Tipaluck Krityakierne
BDL
27
22
0
09 Oct 2019
The Kalai-Smorodinski solution for many-objective Bayesian optimization
M. Binois
Victor Picheny
P. Taillandier
A. Habbal
24
17
0
18 Feb 2019
Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation
Alex A. Gorodetsky
Youssef M. Marzouk
34
38
0
27 Feb 2015
1