Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.07796
Cited By
On overfitting and asymptotic bias in batch reinforcement learning with partial observability
22 September 2017
Vincent François-Lavet
Guillaume Rabusseau
Joelle Pineau
D. Ernst
R. Fonteneau
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On overfitting and asymptotic bias in batch reinforcement learning with partial observability"
12 / 12 papers shown
Title
Near Optimal Behavior via Approximate State Abstraction
David Abel
D Ellis Hershkowitz
Michael L. Littman
OffRL
67
164
0
15 Jan 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
318
4,624
0
10 Nov 2016
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning
Philip S. Thomas
Emma Brunskill
OffRL
365
576
0
04 Apr 2016
How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies
Vincent François-Lavet
R. Fonteneau
D. Ernst
49
111
0
07 Dec 2015
Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen
Ian Goodfellow
Jonathon Shlens
145
667
0
18 Nov 2015
Doubly Robust Off-policy Value Evaluation for Reinforcement Learning
Nan Jiang
Lihong Li
OffRL
186
623
0
11 Nov 2015
Deep Recurrent Q-Learning for Partially Observable MDPs
Matthew J. Hausknecht
Peter Stone
104
1,677
0
23 Jul 2015
Extreme State Aggregation Beyond MDPs
Marcus Hutter
112
23
0
12 Jul 2014
Selecting Near-Optimal Approximate State Representations in Reinforcement Learning
R. Ortner
Odalric-Ambrym Maillard
D. Ryabko
136
27
0
12 May 2014
Selecting the State-Representation in Reinforcement Learning
Odalric-Ambrym Maillard
Rémi Munos
D. Ryabko
57
40
0
11 Feb 2013
Predictive State Representations: A New Theory for Modeling Dynamical Systems
Satinder Singh
Michael R. James
Matthew R. Rudary
AI4TS
AI4CE
86
288
0
11 Jul 2012
Metrics for Finite Markov Decision Processes
N. Ferns
Prakash Panangaden
Doina Precup
74
320
0
11 Jul 2012
1