Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.06181
Cited By
On Nesting Monte Carlo Estimators
18 September 2017
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Nesting Monte Carlo Estimators"
24 / 24 papers shown
Title
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
48
2
0
03 Jan 2025
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
30
0
0
15 Oct 2024
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Paula Cordero-Encinar
Tobias Schröder
P. Yatsyshin
Andrew Duncan
50
0
0
15 Oct 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev inequalities
Fengyi Li
Ayoub Belhadji
Youssef Marzouk
30
1
0
23 Feb 2024
Human-in-the-Loop Visual Re-ID for Population Size Estimation
Gustavo Pérez
Daniel Sheldon
Grant Van Horn
Subhransu Maji
28
0
0
08 Dec 2023
Amortised Experimental Design and Parameter Estimation for User Models of Pointing
Antti Keurulainen
Isak Westerlund
Oskar Keurulainen
Andrew Howes
28
7
0
19 Jul 2023
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
42
29
0
17 Apr 2023
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
37
77
0
28 Feb 2023
Optimal randomized multilevel Monte Carlo for repeatedly nested expectations
Yasa Syed
Guanyang Wang
14
6
0
10 Jan 2023
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
37
11
0
22 Jun 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
36
48
0
03 Mar 2022
Sequential Bayesian experimental designs via reinforcement learning
Hikaru Asano
OffRL
18
0
0
14 Feb 2022
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
21
46
0
03 Nov 2021
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
40
1
0
15 Oct 2021
Test Distribution-Aware Active Learning: A Principled Approach Against Distribution Shift and Outliers
Andreas Kirsch
Tom Rainforth
Y. Gal
OOD
TTA
39
22
0
22 Jun 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
28
78
0
03 Mar 2021
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
52
65
0
23 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
24
19
0
10 Jul 2020
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
19
12
0
04 Dec 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
26
31
0
20 Jul 2018
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Stability of Noisy Metropolis-Hastings
F. Medina-Aguayo
Anthony Lee
Gareth O. Roberts
62
41
0
24 Mar 2015
1