Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.06079
Cited By
Orthogonal Weight Normalization: Solution to Optimization over Multiple Dependent Stiefel Manifolds in Deep Neural Networks
16 September 2017
Lei Huang
Xianglong Liu
B. Lang
Adams Wei Yu
Yongliang Wang
Bo Li
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Orthogonal Weight Normalization: Solution to Optimization over Multiple Dependent Stiefel Manifolds in Deep Neural Networks"
44 / 44 papers shown
Title
Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
Rahul Parhi
Michael Unser
47
5
0
05 Oct 2023
Decentralized Riemannian Conjugate Gradient Method on the Stiefel Manifold
Jun Chen
Haishan Ye
Mengmeng Wang
Tianxin Huang
Guangwen Dai
Ivor W.Tsang
Yong-Jin Liu
29
11
0
21 Aug 2023
Group Orthogonalization Regularization For Vision Models Adaptation and Robustness
Yoav Kurtz
Noga Bar
Raja Giryes
32
0
0
16 Jun 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
Decentralized Riemannian Algorithm for Nonconvex Minimax Problems
Xidong Wu
Zhengmian Hu
Heng Huang
27
15
0
08 Feb 2023
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
46
1
0
12 Oct 2022
AdaWCT: Adaptive Whitening and Coloring Style Injection
Antoine Dufour
Yohan Poirier-Ginter
Alexandre Lessard
Ryan Smith
Michael Lockyer
Jean-François Lalonde
32
1
0
01 Aug 2022
Entangled Residual Mappings
Mathias Lechner
Ramin Hasani
Z. Babaiee
Radu Grosu
Daniela Rus
T. Henzinger
Sepp Hochreiter
14
5
0
02 Jun 2022
Feedback Gradient Descent: Efficient and Stable Optimization with Orthogonality for DNNs
Fanchen Bu
D. Chang
28
6
0
12 May 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
38
17
0
25 Apr 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
37
16
0
13 Apr 2022
The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy
Tianlong Chen
Zhenyu Zhang
Yu Cheng
Ahmed Hassan Awadallah
Zhangyang Wang
ViT
41
37
0
12 Mar 2022
Learning Connectivity with Graph Convolutional Networks for Skeleton-based Action Recognition
H. Sahbi
GNN
38
27
0
06 Dec 2021
Orthogonal Graph Neural Networks
Kai Guo
Kaixiong Zhou
Xia Hu
Yu Li
Yi Chang
Xin Wang
48
34
0
23 Sep 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
El Mehdi Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Coordinate descent on the orthogonal group for recurrent neural network training
E. Massart
V. Abrol
37
10
0
30 Jul 2021
R-Drop: Regularized Dropout for Neural Networks
Xiaobo Liang
Lijun Wu
Juntao Li
Yue Wang
Qi Meng
Tao Qin
Wei Chen
Hao Fei
Tie-Yan Liu
47
424
0
28 Jun 2021
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity
Ryan Henderson
Djork-Arné Clevert
F. Montanari
33
26
0
11 May 2021
Skeleton-based Hand-Gesture Recognition with Lightweight Graph Convolutional Networks
H. Sahbi
3DH
GNN
18
3
0
09 Apr 2021
Delving into Variance Transmission and Normalization: Shift of Average Gradient Makes the Network Collapse
YuXiang Liu
Jidong Ge
Chuanyi Li
Jie Gui
21
2
0
22 Mar 2021
Learning with Hyperspherical Uniformity
Weiyang Liu
Rongmei Lin
Zhen Liu
Li Xiong
Bernhard Schölkopf
Adrian Weller
37
35
0
02 Mar 2021
Improving Unsupervised Domain Adaptation by Reducing Bi-level Feature Redundancy
Mengzhu Wang
Xiang Zhang
L. Lan
Wei Wang
Huibin Tan
Zhigang Luo
AI4CE
39
1
0
28 Dec 2020
Efficient On-Chip Learning for Optical Neural Networks Through Power-Aware Sparse Zeroth-Order Optimization
Jiaqi Gu
Chenghao Feng
Zheng Zhao
Zhoufeng Ying
Ray T. Chen
David Z. Pan
27
28
0
21 Dec 2020
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
J. Hertrich
Sebastian Neumayer
Gabriele Steidl
19
57
0
04 Nov 2020
Continual Learning in Low-rank Orthogonal Subspaces
Arslan Chaudhry
Naeemullah Khan
P. Dokania
Philip Torr
CLL
33
115
0
22 Oct 2020
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xueliang Wang
Yi Ma
Jitendra Malik
VLM
35
54
0
30 Jun 2020
OSLNet: Deep Small-Sample Classification with an Orthogonal Softmax Layer
Xiaoxu Li
Dongliang Chang
Zhanyu Ma
Zheng-Hua Tan
Jing-Hao Xue
Jie Cao
Jingyi Yu
Jun Guo
28
31
0
20 Apr 2020
Orthogonal Over-Parameterized Training
Weiyang Liu
Rongmei Lin
Zhen Liu
James M. Rehg
Liam Paull
Li Xiong
Le Song
Adrian Weller
32
41
0
09 Apr 2020
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
31
314
0
05 Feb 2020
Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform
Jun Li
Fuxin Li
S. Todorovic
24
102
0
04 Feb 2020
Orthogonal Wasserstein GANs
J. Müller
Reinhard Klein
Michael Weinmann
48
9
0
29 Nov 2019
On Generalization Bounds of a Family of Recurrent Neural Networks
Minshuo Chen
Xingguo Li
T. Zhao
19
70
0
28 Oct 2019
Attentive Normalization
Xilai Li
Wei Sun
Tianfu Wu
OOD
ViT
28
31
0
04 Aug 2019
ABD-Net: Attentive but Diverse Person Re-Identification
Tianlong Chen
Shaojin Ding
Jingyi Xie
Ye Yuan
Wuyang Chen
Yang Yang
Zhou Ren
Zhangyang Wang
27
478
0
03 Aug 2019
OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal Regularization
Bingchen Liu
Yizhe Zhu
Zuohui Fu
Gerard de Melo
Ahmed Elgammal
CML
9
41
0
26 May 2019
Cascaded Projection: End-to-End Network Compression and Acceleration
Breton L. Minnehan
Andreas E. Savakis
18
26
0
12 Mar 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
27
194
0
24 Jan 2019
Hamiltonian Monte-Carlo for Orthogonal Matrices
V. Yanush
D. Kropotov
19
1
0
23 Jan 2019
McTorch, a manifold optimization library for deep learning
Mayank Meghwanshi
Pratik Jawanpuria
Anoop Kunchukuttan
Hiroyuki Kasai
Bamdev Mishra
AI4CE
28
41
0
03 Oct 2018
Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions
Jinhyeok Jang
Hyunjoong Cho
Jaehong Kim
Jaeyeon Lee
Seungjoon Yang
18
2
0
11 Sep 2018
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis Haupt
T. Zhao
27
78
0
13 Jun 2018
geomstats: a Python Package for Riemannian Geometry in Machine Learning
Nina Miolane
Johan Mathe
Claire Donnat
Mikael Jorda
Xavier Pennec
AI4CE
37
123
0
21 May 2018
Decorrelated Batch Normalization
Lei Huang
Dawei Yang
B. Lang
Jia Deng
16
190
0
23 Apr 2018
Optimization on Submanifolds of Convolution Kernels in CNNs
Mete Ozay
Takayuki Okatani
51
46
0
22 Oct 2016
1