ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.03799
  4. Cited By
Automatic Differentiation of Rigid Body Dynamics for Optimal Control and
  Estimation

Automatic Differentiation of Rigid Body Dynamics for Optimal Control and Estimation

12 September 2017
Markus Giftthaler
Michael Neunert
M. Stäuble
M. Frigerio
Claudio Semini
J. Buchli
ArXivPDFHTML

Papers citing "Automatic Differentiation of Rigid Body Dynamics for Optimal Control and Estimation"

6 / 6 papers shown
Title
Optimizing Automatic Differentiation with Deep Reinforcement Learning
Optimizing Automatic Differentiation with Deep Reinforcement Learning
Jamie Lohoff
Emre Neftci
148
1
0
28 Jan 2025
Optimal Virtual Model Control for Robotics: Design and Tuning of Passivity-Based Controllers
Optimal Virtual Model Control for Robotics: Design and Tuning of Passivity-Based Controllers
Daniel Larby
F. Forni
81
1
0
20 Jan 2025
The Control Toolbox - An Open-Source C++ Library for Robotics, Optimal
  and Model Predictive Control
The Control Toolbox - An Open-Source C++ Library for Robotics, Optimal and Model Predictive Control
Markus Giftthaler
Michael Neunert
M. Stäuble
J. Buchli
31
58
0
12 Jan 2018
Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic
  Constraints Using Optimal Control
Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control
Markus Giftthaler
Farbod Farshidian
Timothy Sandy
Lukas Stadelmann
J. Buchli
51
62
0
27 Jan 2017
Trajectory Optimization Through Contacts and Automatic Gait Discovery
  for Quadrupeds
Trajectory Optimization Through Contacts and Automatic Gait Discovery for Quadrupeds
Michael Neunert
Farbod Farshidian
Alexander Winkler
J. Buchli
33
120
0
15 Jul 2016
Evaluating direct transcription and nonlinear optimization methods for
  robot motion planning
Evaluating direct transcription and nonlinear optimization methods for robot motion planning
D. Pardo
Lukas Möller
Michael Neunert
Alexander Winkler
J. Buchli
18
72
0
22 Apr 2015
1