ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.03741
  4. Cited By
Learning Graph-Level Representation for Drug Discovery

Learning Graph-Level Representation for Drug Discovery

12 September 2017
Junying Li
Deng Cai
Xiaofei He
    GNN
    AI4CE
ArXivPDFHTML

Papers citing "Learning Graph-Level Representation for Drug Discovery"

20 / 20 papers shown
Title
Tx-LLM: A Large Language Model for Therapeutics
Tx-LLM: A Large Language Model for Therapeutics
Juan Manuel Zambrano Chaves
Eric Wang
Tao Tu
E. D. Vaishnav
Byron Lee
S. S. Mahdavi
Christopher Semturs
David Fleet
Vivek Natarajan
Shekoofeh Azizi
LM&MA
31
12
0
10 Jun 2024
KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy
KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy
Qianxiong Xu
Cheng Long
Ziyue Li
Sijie Ruan
Rui Zhao
Zhishuai Li
34
7
0
05 Nov 2023
Tired of Over-smoothing? Stress Graph Drawing Is All You Need!
Tired of Over-smoothing? Stress Graph Drawing Is All You Need!
Xue Li
Yuanzhi Cheng
19
0
0
19 Nov 2022
A Comparative Study of Graph Neural Networks for Shape Classification in
  Neuroimaging
A Comparative Study of Graph Neural Networks for Shape Classification in Neuroimaging
N. Shehata
Wulfie Bain
Ben Glocker
35
2
0
29 Oct 2022
Predicting Protein-Ligand Binding Affinity with Equivariant Line Graph
  Network
Predicting Protein-Ligand Binding Affinity with Equivariant Line Graph Network
Yi Yi
Xu Wan
Kangfei Zhao
Ou-Yang Le
Pei-Ying Zhao
24
1
0
27 Oct 2022
Graph Data Augmentation for Graph Machine Learning: A Survey
Graph Data Augmentation for Graph Machine Learning: A Survey
Tong Zhao
Wei Jin
Yozen Liu
Yingheng Wang
Gang Liu
Stephan Günnemann
Neil Shah
Meng Jiang
OOD
30
79
0
17 Feb 2022
Data Augmentation for Deep Graph Learning: A Survey
Data Augmentation for Deep Graph Learning: A Survey
Kaize Ding
Zhe Xu
Hanghang Tong
Huan Liu
OOD
GNN
27
218
0
16 Feb 2022
OOD-GNN: Out-of-Distribution Generalized Graph Neural Network
OOD-GNN: Out-of-Distribution Generalized Graph Neural Network
Haoyang Li
Xin Wang
Ziwei Zhang
Wenwu Zhu
OODD
OOD
29
97
0
07 Dec 2021
3D Infomax improves GNNs for Molecular Property Prediction
3D Infomax improves GNNs for Molecular Property Prediction
Hannes Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lió
AI4CE
36
203
0
08 Oct 2021
Edge but not Least: Cross-View Graph Pooling
Edge but not Least: Cross-View Graph Pooling
Xiaowei Zhou
Jie Yin
Ivor W. Tsang
42
2
0
24 Sep 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
34
287
0
26 Jul 2021
Do Transformers Really Perform Bad for Graph Representation?
Do Transformers Really Perform Bad for Graph Representation?
Chengxuan Ying
Tianle Cai
Shengjie Luo
Shuxin Zheng
Guolin Ke
Di He
Yanming Shen
Tie-Yan Liu
GNN
30
433
0
09 Jun 2021
Robust Optimization as Data Augmentation for Large-scale Graphs
Robust Optimization as Data Augmentation for Large-scale Graphs
Kezhi Kong
Ge Li
Mucong Ding
Zuxuan Wu
Chen Zhu
Guohao Li
Gavin Taylor
Tom Goldstein
106
74
0
19 Oct 2020
Molecule Edit Graph Attention Network: Modeling Chemical Reactions as
  Sequences of Graph Edits
Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits
Mikolaj Sacha
Mikolaj Blaz
Piotr Byrski
Paweł Dąbrowski-Tumański
Mikołaj Chromiński
Rafał Loska
Pawel Wlodarczyk-Pruszynski
Stanislaw Jastrzebski
GNN
25
142
0
27 Jun 2020
Backdoor Attacks to Graph Neural Networks
Backdoor Attacks to Graph Neural Networks
Zaixi Zhang
Jinyuan Jia
Binghui Wang
Neil Zhenqiang Gong
GNN
24
210
0
19 Jun 2020
Subgraph Neural Networks
Subgraph Neural Networks
Emily Alsentzer
S. G. Finlayson
Michelle M. Li
Marinka Zitnik
GNN
23
134
0
18 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
30
2,652
0
02 May 2020
Molecule Attention Transformer
Molecule Attention Transformer
Lukasz Maziarka
Tomasz Danel
Slawomir Mucha
Krzysztof Rataj
Jacek Tabor
Stanislaw Jastrzebski
19
167
0
19 Feb 2020
Metadynamics for Training Neural Network Model Chemistries: a
  Competitive Assessment
Metadynamics for Training Neural Network Model Chemistries: a Competitive Assessment
John E. Herr
Kun Yao
R. McIntyre
David W Toth
John A. Parkhill
20
63
0
19 Dec 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
214
1,780
0
02 Mar 2017
1