ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.03697
  4. Cited By
Automatic Ground Truths: Projected Image Annotations for Omnidirectional
  Vision

Automatic Ground Truths: Projected Image Annotations for Omnidirectional Vision

12 September 2017
V. Stamatescu
Peter Barsznica
Manjung Kim
K. K. Liu
Mark McKenzie
Will Meakin
Gwilyn Saunders
S. Wong
R. Brinkworth
    VGen
ArXivPDFHTML

Papers citing "Automatic Ground Truths: Projected Image Annotations for Omnidirectional Vision"

5 / 5 papers shown
Title
A data set for evaluating the performance of multi-class multi-object
  video tracking
A data set for evaluating the performance of multi-class multi-object video tracking
Avishek Chakraborty
V. Stamatescu
S. Wong
G. Wigley
D. Kearney
21
2
0
21 Apr 2017
MOT16: A Benchmark for Multi-Object Tracking
MOT16: A Benchmark for Multi-Object Tracking
Anton Milan
Laura Leal-Taixe
Ian Reid
Stefan Roth
Konrad Schindler
VOT
144
1,801
0
02 Mar 2016
3D Reconstruction from Full-view Fisheye Camera
3D Reconstruction from Full-view Fisheye Camera
Chuiwen Ma
Liang Shi
H. Huang
Mengyuan Yan
38
26
0
20 Jun 2015
MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking
MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking
Laura Leal-Taixé
Anton Milan
Ian Reid
Stefan Roth
Konrad Schindler
VOT
71
815
0
08 Apr 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,525
0
01 Sep 2014
1