ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.02169
13
16

Bayesian Optimisation for Safe Navigation under Localisation Uncertainty

7 September 2017
Rafael Oliveira
Lionel Ott
Vitor Campagnolo Guizilini
F. Ramos
ArXivPDFHTML
Abstract

In outdoor environments, mobile robots are required to navigate through terrain with varying characteristics, some of which might significantly affect the integrity of the platform. Ideally, the robot should be able to identify areas that are safe for navigation based on its own percepts about the environment while avoiding damage to itself. Bayesian optimisation (BO) has been successfully applied to the task of learning a model of terrain traversability while guiding the robot through more traversable areas. An issue, however, is that localisation uncertainty can end up guiding the robot to unsafe areas and distort the model being learnt. In this paper, we address this problem and present a novel method that allows BO to consider localisation uncertainty by applying a Gaussian process model for uncertain inputs as a prior. We evaluate the proposed method in simulation and in experiments with a real robot navigating over rough terrain and compare it against standard BO methods.

View on arXiv
Comments on this paper