ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.01589
  4. Cited By
An active-learning algorithm that combines sparse polynomial chaos
  expansions and bootstrap for structural reliability analysis
v1v2 (latest)

An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis

5 September 2017
S. Marelli
Bruno Sudret
ArXiv (abs)PDFHTML

Papers citing "An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis"

5 / 5 papers shown
Title
A general framework for data-driven uncertainty quantification under
  complex input dependencies using vine copulas
A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas
Emiliano Torre
S. Marelli
P. Embrechts
Bruno Sudret
48
97
0
25 Sep 2017
Reliability analysis of high-dimensional models using low-rank tensor
  approximations
Reliability analysis of high-dimensional models using low-rank tensor approximations
K. Konakli
Bruno Sudret
59
47
0
28 Jun 2016
Metamodel-based sensitivity analysis: Polynomial chaos expansions and
  Gaussian processes
Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes
Loic Le Gratiet
S. Marelli
Bruno Sudret
58
157
0
14 Jun 2016
Metamodel-based importance sampling for structural reliability analysis
Metamodel-based importance sampling for structural reliability analysis
V. Dubourg
Francois Deheeger
Bruno Sudret
67
490
0
03 May 2011
Reliability-based design optimization using kriging surrogates and
  subset simulation
Reliability-based design optimization using kriging surrogates and subset simulation
V. Dubourg
Bruno Sudret
Jean-Marc Bourinet
AI4CE
55
423
0
19 Apr 2011
1