ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.09702
  4. Cited By
Human and Machine Judgements for Russian Semantic Relatedness

Human and Machine Judgements for Russian Semantic Relatedness

31 August 2017
Alexander Panchenko
Dmitry Ustalov
N. Arefyev
Denis Paperno
N. Konstantinova
Natalia Loukachevitch
Chris Biemann
    VLM
ArXivPDFHTML

Papers citing "Human and Machine Judgements for Russian Semantic Relatedness"

6 / 6 papers shown
Title
RuBLiMP: Russian Benchmark of Linguistic Minimal Pairs
RuBLiMP: Russian Benchmark of Linguistic Minimal Pairs
Ekaterina Taktasheva
Maxim Bazhukov
Kirill Koncha
Alena Fenogenova
Ekaterina Artemova
Vladislav Mikhailov
42
9
0
27 Jun 2024
RUSSE'2020: Findings of the First Taxonomy Enrichment Task for the
  Russian language
RUSSE'2020: Findings of the First Taxonomy Enrichment Task for the Russian language
Irina Nikishina
V. Logacheva
Alexander Panchenko
Natalia Loukachevitch
9
22
0
22 May 2020
How much does a word weigh? Weighting word embeddings for word sense
  induction
How much does a word weigh? Weighting word embeddings for word sense induction
N. Arefyev
Pavel Ermolaev
Alexander Panchenko
17
23
0
23 May 2018
An Unsupervised Word Sense Disambiguation System for Under-Resourced
  Languages
An Unsupervised Word Sense Disambiguation System for Under-Resourced Languages
Dmitry Ustalov
Denis Teslenko
Alexander Panchenko
M. Chernoskutov
Chris Biemann
Simone Paolo Ponzetto
16
15
0
27 Apr 2018
RUSSE'2018: A Shared Task on Word Sense Induction for the Russian
  Language
RUSSE'2018: A Shared Task on Word Sense Induction for the Russian Language
Alexander Panchenko
A. Lopukhina
Dmitry Ustalov
K. Lopukhin
N. Arefyev
A. Leontyev
Natalia Loukachevitch
8
35
0
15 Mar 2018
Interpretable probabilistic embeddings: bridging the gap between topic
  models and neural networks
Interpretable probabilistic embeddings: bridging the gap between topic models and neural networks
Anna Potapenko
Artem Popov
K. Vorontsov
BDL
30
14
0
11 Nov 2017
1