ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.09702
16
49

Human and Machine Judgements for Russian Semantic Relatedness

31 August 2017
Alexander Panchenko
Dmitry Ustalov
N. Arefyev
Denis Paperno
N. Konstantinova
Natalia Loukachevitch
Chris Biemann
    VLM
ArXivPDFHTML
Abstract

Semantic relatedness of terms represents similarity of meaning by a numerical score. On the one hand, humans easily make judgments about semantic relatedness. On the other hand, this kind of information is useful in language processing systems. While semantic relatedness has been extensively studied for English using numerous language resources, such as associative norms, human judgments, and datasets generated from lexical databases, no evaluation resources of this kind have been available for Russian to date. Our contribution addresses this problem. We present five language resources of different scale and purpose for Russian semantic relatedness, each being a list of triples (word_i, word_j, relatedness_ij). Four of them are designed for evaluation of systems for computing semantic relatedness, complementing each other in terms of the semantic relation type they represent. These benchmarks were used to organize a shared task on Russian semantic relatedness, which attracted 19 teams. We use one of the best approaches identified in this competition to generate the fifth high-coverage resource, the first open distributional thesaurus of Russian. Multiple evaluations of this thesaurus, including a large-scale crowdsourcing study involving native speakers, indicate its high accuracy.

View on arXiv
Comments on this paper